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A Look  Back at the History of  
Orbital State Estimation…

1969

2022

…All Utilized the 
Extended Kalman Filter!

1981

1996
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The Extended Kalman Filter 
Assumptions and Limitations

• EKF linearizes the nonlinear system about an estimate mean value, assuming that the observations are 
frequent enough that the linearization is accurate

·x = f(x, t) + w(t)Model:
f(x, t) ≈ f(μ, t) + f′ (μ, t)(x − μ)Linearization:
z = h(x, t) + v(t)Observation:
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• EKF linearizes the nonlinear system about an estimate mean value, assuming that the observations are 
frequent enough that the linearization is accurate

·x = f(x, t) + w(t)Model:
f(x, t) ≈ f(μ, t) + f′ (μ, t)(x − μ)Linearization:
z = h(x, t) + v(t)Observation:

Estimation:

·x̂ = f(x̂, t) + K(t)[z − h(x̂)]
·P(t) = F(t)P(t) + P(t)F(t)T − K(t)H(t)P(t) + Q(t)
K(t) = P(t)H(t)TR(t)−1

F(t) =
∂f
∂x x̂

, H(t) =
∂h
∂x x̂

{
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• For the majority of past space missions, the observation frequency has made linearization error negligible - this 

may not always be the case!
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Current Landscape of Uncertainty Propagation Methods 
Alternatives to the Extended Kalman Filter

Monte Carlo/Particle Filters

• “Monte Carlo has some core 
fundamental limitations… the 
computational burden becomes 
prohibitive for very low 
probability events.” - NASA 
Technology Roadmaps, 2015 

• A large, static number of 
particles are required to represent 
non-Gaussian uncertainty

Kalman Filters Variations

• Accuracy is predicated on 
frequent measurement updates 
such that linearization errors are 
negligible 

• Extremely chaotic dynamics 
means the measurement 
frequency requirement may not 
be feasible for certain regimes

Gaussian Mixture Models

• Depicts a non-Gaussian 
uncertainty as a mixture of 
Gaussian distributions  

• Representing highly non-Gaussian 
distributions requires a large 
number of Gaussian distributions, 
equating to an ad-hoc splitting/
weighting procedure and a 
computational burden
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Motivation 
Efficient, Non-Gaussian, Uncertainty Propagation Methods

• To represent state uncertainty in chaotic regimes, novel uncertainty propagation 
methods must be accurate for long periods of time in the absence of measurement 
updates, represent non-Gaussian distributions, consider epistemic uncertainty, and be 
scalable to high-dimensional problems. 

Grid-based Bayesian 
Estimation Exploiting 

Sparsity (GBEES)
An efficient Bayesian estimation 

method for representing and 
propagating uncertainty
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General Formulation 
Mixed Discrete/Continuous Propagation

• GBEES consists of two distinct processes, one performed in continuous-time, the other in discrete-time:

1. The probability distribution function  is continuous-time marched via the Fokker-Planck Equation: px(x′ , t)

∂px(x′ , t)
∂t

= −
∂fi(x′ , t)px(x′ , t)

∂x′ i
+

1
2

∂2qijpx(x′ , t)
∂x′ i∂x′ j

• : advection (EOMs) in the  dimension 
• :  element of the spectral density ( , PDE is hyperbolic)

fi ith

qij (i, j)th Q = 0

2. At discrete-time interval , measurement  updates  via Bayes’ Theorem: tk yk px(x′ , t)

px(x′ , tk+) =
py(yk |x′ )px(x′ , tk−)

C
• : a posteriori distribution 
• : measurement distribution 
• : a priori distribution 
• : normalization constant

px(x′ , tk+)
py(yk |x′ )
px(x′ , tk−)
C
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Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)

• Consider a 1-dimensional, linear test example:

x = [x],
dx
dt

= [a], a > 0

• How does , governed by , change with respect to ?p(x) dx/dt t

• Initial observation of  results in a Gaussian PDF  centered about  with standard deviation x(t) p(x) x0 σ

x

p(x)

x0

σ

a

GBEES treats probability as a fluid, and time-evolves the 
distribution subject to the Fokker-Planck Equation via a 

Godunov, 2nd order-accurate, finite volume method.
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• Ignoring sparsity

• Exploiting sparsity

Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)

*Not GBEES, just a visual aid
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Test Case 
3D Lorenz Attractor

t = 0

t = 1

GBEES compared with a 500 particle Monte Carlo simulation

• Colloquially known as the “Butterfly Effect”, the Lorenz attractor is a set of chaotic solutions to the Lorenz 
system  

• Test case demonstrates how a Gaussian uncertainty can quickly evolve into a non-Gaussian uncertainty (and 
even split)

x = [
x
y
z],

dx
dt

=
σ(y − x)
−y − xz

−b(z + r) − xy

t = 0

t = 1

σ = 4, b = 1, r = 48
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Extension to Astrodynamical Problems 
Planar Circular Restricted Three-body Problem (PCR3BP)

• Jump from low-dimensional, theoretical nonlinear systems to high-dimensional, physical nonlinear systems 
• As an astrodynamical test case, we apply GBEES to the planar circular restricted three-body problem (PCR3BP)

Lyapunov Orbits
Dynamically unstable, entirely planar orbits about the 

Lagrange points

Possible operating 
trajectories for 

spacecraft examining 
celestial systems for 
multiple orbits - a 

great test case for 
GBEES! 

*Initial conditions generated via JPL Three-Body Periodic Orbit Catalog

PCR3BP

x =

x
y
vx
vy

dx
dt

=

vx
vy

2vy + Ωx

−2vx + Ωy

where Ω(x, y) =
x2 + y2

2
+

1 − μ
r1

+
μ
r2

+
μ(1 − μ)

2

Four-dimensional, nonlinear system
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Infrequently observed Jupiter-Europa Trajectory 
Application of GBEES

a priori

a priori

a priori

a posteriori

a priori

a posteriori

a priori

a posteriori

a priori

a posteriori
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Infrequently observed Jupiter-Europa Trajectory 
Comparison with MC Simulation - Accuracy

• Comparing results of discretized PDFs propagated via GBEES with 500 particle MC simulation

• Note: at discrete measurement intervals , GBEES updates the PDF via Bayes’ theorem, while the MC 
simulation resamples from the new a priori measurement, disregarding any prior information

Mi
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Consideration of epistemic uncertainty for solar probes 
Application of GBEES

a priori

a priori
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Consideration of epistemic uncertainty for solar probes 
Comparison with MC Simulation - Accuracy

• Comparing results of discretized PDFs propagated via GBEES with 500 particle MC simulation

• Note: there is no consideration for epistemic uncertainty in the MC simulation

No Diffusion Diffusion

• -position range:  
• y-position range: 

x [−3.4136 × 106, − 1.7636 × 106]
[−1.2416 × 107, − 1.1416 × 107]

• -position range:  
• y-position range: 

x [−3.5836 × 106, − 1.5536 × 106]
[−1.2536 × 107, − 1.1406 × 107]

Difference of 380,000 km and 13,000 km in x- and y-directions, respectively! 



• A jump in dimensionality means an increase 
in computational burden 

• This may be alleviated by time-marching in 
a variable set that changes slower (orbital 
elements)
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Conclusion 
Comments on Results and Future Work

• Accuracy and efficiency results of GBEES compared to MC simulations in regimes where it is expected that the 
EKF may fail are promising, but require more tweaking if we are to feasibly argue it can compete computationally

• Rigorous computational profile may 
determine where bottlenecks are occurring 

• Complete examination of conditions where 
EKF fail may also be beneficial for 
demonstrating regimes/mission trajectories 
of interest

• Next step will be representing and propagating uncertainty in a higher-fidelity, six-dimensional system
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All code can be found at: https://github.com/bhanson10/GBEES 

Thank you for your time. Questions?


