

 3.5

DRONDER

ON THE VALIDITY OF THE GAUSSIAN ASSUMPTION IN THE JOVIAN SYSTEM: EVALUATING LINEAR AND NONLINEAR FILTERS FOR MEASUREMENT-SPARSE ESTIMATION

10.5.

 \cdot \circ

Benjamin L. Hanson

Ph.D. Student, Jacobs School of Engineering Department of Mechanical and Aerospace Engineering UC San Diego, La Jolla, CA

Dr. Aaron J. Rosengren

Assistant Professor, Jacobs School of Engineering Department of Mechanical and Aerospace Engineering UC San Diego, La Jolla, CA

Dr. Thomas R. Bewley

Professor, Jacobs School of Engineering Department of Mechanical and Aerospace Engineering UC San Diego, La Jolla, CA

Dr. Todd A. Ely

Principal Navigation Engineer Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA

GBEES

Case Study: Low-Energy Trajectories for Europa Lander Time validity of the Gaussian assumption of uncertainty

• A theoretically ΔV -free, ballistic capture of a Europa lander realistically requires **statistical maneuvers** to maintain Gaussian error in position and velocity for linearized navigation techniques

McElrath, Tim, et al. "Navigating low-energy trajectories to land on the surface of Europa." NTRS. (2021)

Case Study: Low-Energy Trajectories for Europa Lander Time validity of the Gaussian assumption of uncertainty

KEY QUESTION: What are the temporal limits of linear filters in the Jovian regime, and when might it be necessary to implement nonlinear filters?

• A theoretically ΔV -free, ballistic capture of a Europa lander realistically requires **statistical maneuvers** to maintain Gaussian error in position and velocity for linearized navigation techniques

McElrath, Tim, et al. "Navigating low-energy trajectories to land on the surface of Europa." NTRS. (2021)

Test Model: Low-Earth Orbit (LEO) Review of measurement-sparse LEO estimation

Yun, Sehyun, et al. "Kernel-based ensemble gaussian mixture filtering for orbit determination with sparse data." AdSpR. (2022)

• Previous work has focused on the efficacy of linear/nonlinear filters applied to LEO trajectories in measurement-

- sparse conditions
	-
	-
	-

Jovian Application: Framework Changes Truth Model

• We plan to implement a similar framework as previously shown, applied to trajectories in the Jovian system, with

Monte Carlo Interpretation **Particle Filter Interpretation**

the following important changes implemented:

1. Truth Model

✴ A **high-resolution particle filter** will allow for **confidence interval** comparison with linear filters, providing more information than a high-resolution Monte Carlo distribution

$$
\{x\} \sim \mathcal{N}(\mu, \Sigma)
$$

For Monte Carlo/Particle Filter:

$$
\{\boldsymbol{p}(\boldsymbol{x})\} \sim \exp\left\{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^T \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right\}
$$

For Particle Filter only:

• We plan to implement a similar framework as previously shown, applied to trajectories in the Jovian system, with

the following important changes implemented:

2. Distribution Comparison Metric

✴ The metric used to indicate diverge (previously SNEES) should consider **the true probability distribution is non-Gaussian** after enough propagation time without measurements

**SNEES* : Scaled Normalized Estimation Error Squared $^*D_{\textit{KL}}$: Kullback-Leibler Divergence

$$
SNEES = \frac{1}{Md} \sum_{j=1}^{M} (\mathbf{x}^{(j)} - \mathbf{\hat{x}}^{(j)})^T (\hat{\Sigma}^{(j)})^{-1} (\mathbf{x}^{(j)} - \mathbf{\hat{x}}^{(j)})
$$

✦ **Problem:** Assumes Gaussian errors

$$
D_{KL}(P||Q) = \sum_{x \in \chi} P(x) \log \left(\frac{P(x)}{Q(x)} \right)
$$

✦ **Problem:** Diverges for extremely low probability events when distributions differ

Jovian Application: Framework Changes Distribution Comparison Metric

Gaussian uncertainty propagated with Two-Body Dynamics becoming highly non-Gaussian

Jovian Application: Framework Changes Propagation Conditions

the following important changes implemented:

-
- **←** We consider negligible process noise $(Q = 0)$ and correct initial measurements $(\delta x_0 = x_0 \hat{x}_0 = 0)$ **T**
- ✴ Purely two-body dynamics will be propagated, so the following results are likely a **best-case scenario**

3. Propagation Conditions

✴ To test the limits of the linear filters, we plan on performing **"measurementless"** propagation

✴ Filter parameters: ✦ Future work will aim to feed the dynamics from an **ephemeris-level numerical propagator**

$$
x = \begin{bmatrix} a, & e, & i, & \Omega, & \omega, & M \end{bmatrix}, \quad \dot{x} = \begin{bmatrix} 0, & 0, & 0, & 0, & \sqrt{\frac{\mu}{a^3}} \end{bmatrix}^T
$$

• We plan to implement a similar framework as previously shown, applied to trajectories in the Jovian system, with

Distribution Comparison Metric Choosing a metric for Gaussian/non-Gaussian distribution comparison

Point Mass Point DICO Re

3D Isosurface Representation

$$
p_{thresh} = 0.971
$$
\n
$$
p_{thresh} = 0.74
$$
\n
$$
p_{thresh} = 0.20
$$

where

 $p^* =$ *M* ∑ *i*=1 $p_i \leq p_{thresh}$

α **-Convex Hull Generation**

Edelsbrunner, Herbert, et al. "Threedimensional alpha shapes." ACM. (1994)

Distribution Comparison Metric Choosing a metric for Gaussian/non-Gaussian distribution comparison

Jovian Application: Low-Europa Orbit Revised framework applied to measurement-sparse Jovian estimation

- Implement linear filter estimation with new comparison framework on Jovian trajectory: ✴ Initial condition resulting in highly-inclined, low-Europa orbit $*$ Propagated for 4 revolutions (11.279 hours) w/ RI
	- ✴ No measurements and negligible process noise
	- ✴ *α*-convex hull comparison metric

$$
x_0 = \begin{bmatrix} a & (km) \\ e & () \\ i & (s) \\ \Omega & (s) \\ \omega & (s) \\ M & (s) \end{bmatrix} = \begin{bmatrix} 2029.4809 \\ 0.17 \\ 112.3^{\circ} \\ 180^{\circ} \\ 0^{\circ} \\ 0^{\circ} \end{bmatrix}
$$

$$
\sigma_r = 1 \text{ km}, \ \sigma_v = 1 \text{ m/s}
$$

Lara, Martin, et al. "On the design of a science orbit about Europa." JPL. (2006) Schenk, Paul, et al. "A very young age for true polar wander on Europa from related fracturing." GeoRL. (2020)

$$
\overline{\mathrm{K}8(7)}
$$

Jovian Application: Low-Europa Orbit Evaluating the e!cacy of linear "lters for measurement-sparse estimation

 t (orbital periods)

Jovian Application: Low-Europa Orbit Evaluating the e!cacy of linear "lters for measurement-sparse estimation

 t (orbital periods)

Jovian Application: Low-Europa Orbit Evaluating the e!cacy of linear "lters for measurement-sparse estimation

GBEES is a 2nd-order accurate, Godunov finite volume method that treats probability as a fluid, flowing the PDF through phase space subject to the dynamics of the system. Because of its formulation, it can handle deterministic/stochastic systems while maintaining resolution.

Motivation for New Nonlinear Filters Addressing the shortcomings of the particle filter

• To address the shortcomings of the linear filter, we utilize...

- GBEES consists of two distinct processes, one performed in **continuous-time**, the other in **discrete-time**:
	- 1. The probability distribution function $p_x(x', t)$ is continuous-time marched via the **Fokker-Planck Equation**:

Nonlinear Filter Comparison Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)

-
-

 $* f_i$: advection (EOMs) in the i^{th} dimension $* q_{ij}: (i, j)^{\text{th}}$ element of the spectral density ($Q = 0$, PDE is hyperbolic) th

$$
\frac{\partial p_{\mathbf{x}}(\mathbf{x}',t)}{\partial t} = -\frac{\partial f_i(\mathbf{x}',t) p_{\mathbf{x}}(\mathbf{x}',t)}{\partial x'_i} + \frac{1}{2} \frac{\partial^2 q_{ij} p_{\mathbf{x}}(\mathbf{x}',t)}{\partial x'_i \partial x'_j}
$$

$$
p_{\mathbf{x}}(\mathbf{x}', t_{k+}) = \frac{p_{\mathbf{y}}(\mathbf{y}_k | \mathbf{x}')p_{\mathbf{x}}(\mathbf{x}', t_{k-})}{C}
$$

- \ast $p_{\mathbf{x}}(\mathbf{x}', t_{k+})$: a posteriori distribution $*$ $p_y(y_k | x')$: measurement distribution
- **∗** p **_{x**}(**x**['], *t*_{*k*−}): a priori distribution * C: normalization constant

- GBEES consists of two distinct processes, one performed in **continuous-time**, the other in **discrete-time**:
	- 1. The probability distribution function $p_x(x', t)$ is continuous-time marched via the **Fokker-Planck Equation**:

Nonlinear Filter Comparison Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)

 $* f_i$: advection (EOMs) in the i^{th} dimension $* q_{ij}: (i, j)^{\text{th}}$ element of the spectral density ($Q = 0$, PDE is hyperbolic) th

$$
\frac{\partial p_{\mathbf{x}}(\mathbf{x}',t)}{\partial t} = -\frac{\partial f_i(\mathbf{x}',t) p_{\mathbf{x}}(\mathbf{x}',t)}{\partial x'_i} + \frac{1}{2} \frac{\partial^2 q_{ij} p_{\mathbf{x}}(\mathbf{x}',t)}{\partial x'_i \partial x'_j}
$$

- \ast $p_{\mathbf{x}}(\mathbf{x}', t_{k+})$: a posteriori distribution $*$ $p_y(y_k | x')$: measurement distribution
- **∗** p **_{x**}(**x**['], *t*_{*k*−}): a priori distribution ✴ : normalization constant *^C* **A priori**

$$
p_{\mathbf{x}}(\mathbf{x}', t_{k+}) = \frac{p_{\mathbf{y}}(\mathbf{y}_k | \mathbf{x}')p_{\mathbf{x}}(\mathbf{x}', t_{k-})}{C}
$$

- GBEES consists of two distinct processes, one performed in **continuous-time**, the other in **discrete-time**:
	- 1. The probability distribution function $p_x(x', t)$ is continuous-time marched via the **Fokker-Planck Equation**:

Nonlinear Filter Comparison Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)

 $* f_i$: advection (EOMs) in the i^{th} dimension $* q_{ij}: (i, j)^{\text{th}}$ element of the spectral density ($Q = 0$, PDE is hyperbolic) th

$$
\frac{\partial p_{\mathbf{x}}(\mathbf{x}',t)}{\partial t} = -\frac{\partial f_i(\mathbf{x}',t) p_{\mathbf{x}}(\mathbf{x}',t)}{\partial x'_i} + \frac{1}{2} \frac{\partial^2 q_{ij} p_{\mathbf{x}}(\mathbf{x}',t)}{\partial x'_i \partial x'_j}
$$

$$
p_{\mathbf{x}}(\mathbf{x}', t_{k+}) = \frac{p_{\mathbf{y}}(\mathbf{y}_k | \mathbf{x}')p_{\mathbf{x}}(\mathbf{x}', t_{k-})}{C}
$$

- \ast $p_{\mathbf{x}}(\mathbf{x}', t_{k+})$: a posteriori distribution $*$ $p_y(y_k | x')$: measurement distribution
- **∗** p **_{x**}(**x**['], *t*_{*k*−}): a priori distribution

Nonlinear Filter Comparison Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)

• GBEES consists of two distinct processes, one performed in **continuous-time**, the other in **discrete-time**:

1. The probability distribution function $p_x(x', t)$ is continuous-time marched via the **Fokker-Planck Equation**:

 A priori X **Measurement** = **A** posteriori

 $* f_i$: advection (EOMs) in the i^{th} dimension $* q_{ij}: (i, j)^{\text{th}}$ element of the spectral density ($Q = 0$, PDE is hyperbolic) th

- -

$$
\frac{\partial p_{\mathbf{x}}(\mathbf{x}',t)}{\partial t} = -\frac{\partial f_i(\mathbf{x}',t) p_{\mathbf{x}}(\mathbf{x}',t)}{\partial x'_i} + \frac{1}{2} \frac{\partial^2 q_{ij} p_{\mathbf{x}}(\mathbf{x}',t)}{\partial x'_i \partial x'_j}
$$

$$
p_{\mathbf{x}}(\mathbf{x}', t_{k+}) = \frac{p_{\mathbf{y}}(\mathbf{y}_k | \mathbf{x}')p_{\mathbf{x}}(\mathbf{x}', t_{k-})}{C}
$$

- \ast $p_{\mathbf{x}}(\mathbf{x}', t_{k+})$: a posteriori distribution $*$ $p_y(y_k | x')$: measurement distribution
- **∗** p **_{x**}(**x**['], *t*_{*k*−}): a priori distribution \ast C: normalization constant

Jovian Application: Three-Body Problem Circular Restricted Three-Body Problem (CR3BP)

• We look to apply the developed framework to another systems applicable to Jovian trajectories

Circular Restricted Three-Body Problem

$$
\mathbf{x} = \begin{bmatrix} x \\ y \\ z \\ v_x \\ v_y \\ v_z \end{bmatrix}, \quad \dot{\mathbf{x}} = \begin{bmatrix} v_x \\ v_y \\ v_z \\ -2v_y + \Omega_x \\ -2v_x + \Omega_y \\ \Omega_z \end{bmatrix}
$$

where $\Omega(x, y) = \frac{x^2 + y^2}{2} + \frac{1 - \mu}{r_1} + \frac{\mu}{r_2} + \frac{\mu(1 - \mu)}{2}$

✴ We use initial conditions generated from the JPL Three-Body Periodic Orbit Catalog for the Jupiter-Europa system

Park, Ryan. "Jet Propulsion Laboratory Three-Body Periodic Orbit Catalog." (2024)

Hanson, Benjamin L., et al. "State Estimation of Chaotic Trajectories: A Higher-Dimensional, Grid-Based, Bayesian Approach to Uncertainty Propagation." AIAA. (2024)

Jovian Application: Lagrange Point Orbits Review of measurement-sparse Jovian estimation

• Previous work applied a similar framework to **planar Lyapunov orbits** about L_3 in the Jupiter-Europa 3BP

• We found that uncertainty remained near Gaussian, even with an infrequent measurement cadence (∼1.17 days)

Jovian Application: Low-Prograde Orbit Revised framework applied to measurement-sparse Jovian estimation

• Implement linear filter estimation with new comparison framework on Jovian trajectory: ✴ Initial condition resulting in eastern, low-prograde orbit about Europa ✴ Propagated for 14 hours w/ RK8(7) and GBEES ✴ No measurements and negligible process noise

✴ *α*-convex hull comparison metric

Park, Ryan. "Jet Propulsion Laboratory Three-Body Periodic Orbit Catalog." (2024) Stastny, Nathan, et al. "Autonomous optical navigation at Jupiter: a linear covariance analysis." JSpRo. (2024)

$$
x_0 = \begin{bmatrix} x & (km) \\ y & (km) \\ v_{x} & (m/s) \\ v_{y} & (m/s) \end{bmatrix} = \begin{bmatrix} 6.803 \times 10^5 \\ 0 \\ 0 \\ 0.8623 \end{bmatrix}
$$

 $\sigma_r = 100 \text{ km}, \ \sigma_v = 10 \text{ m/s}$

Jovian Application: Low-Prograde Orbit Comparing linear estimation with GBEES

Jovian Application: Low-Prograde Orbit Comparing linear estimation with GBEES

Jovian Application: Low-Prograde Orbit Comparing Particle Filter with GBEES

- We utilize a high-resolution PF as a truth distribution, so why don't we use it for estimation?
	- number of particles that are marched from the previous epoch

✴ To achieve **sufficient resolution** at a distant measurement epoch requires a large (**usually unknown**)

✴ GBEES nearly maintains resolution by **growing with the uncertainty**

• Low-Europa Orbit

• Future Work

- ✴ Propagating in the **slow-changing**, three-body local orbit elements
- ✴ **Parallelization** of Riemann solver embedded within GBEES
- ✴ Dynamics sourced from an **ephemeris-level** numerical integrator

 $*$ 1*σ* position uncertainty estimated by the UKF (Equinoctial) is able to maintain $J_r \geq 0.5$ compared with truth distribution for nearly 2 revolutions without measurements, with local minima located at periapsis

• Low-Prograde Orbit in Jupiter-Europa Three-Body System

✴ While linear filters are able to estimate uncertainty better when distributions are near-Gaussian, GBEES is more accurate when distributions are far from Gaussian, which occurs in about 14 hours for the given LPO

- **This investigation was supported by the NASA Space Technology Graduate Research Opportunities Fellowship (Grant #80NSSC23K1219)**
- **Thanks to Prof. Rosengren, Prof. Bewley, and Dr. Ely for their invaluable insight and contributions.**
	- **All code can be found at:<https://github.com/bhanson10/GBEES>and <https://github.com/bhanson10/KePASSA2024>**
		- **Thank you for your time. Questions?**