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Case Study: Low-Energy Trajectories for Europa Lander  
Time validity of the Gaussian assumption of uncertainty

• A theoretically -free, ballistic capture of a Europa lander realistically requires statistical maneuvers to 
maintain Gaussian error in position and velocity for linearized navigation techniques

ΔV

Proposed -free 
ballistic capture 

ΔV

Actual trajectory 
with statistical 
maneuvers ΔVi

McElrath, Tim, et al. "Navigating low-energy trajectories to land on the surface of Europa.” NTRS. (2021)
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Case Study: Low-Energy Trajectories for Europa Lander  
Time validity of the Gaussian assumption of uncertainty

Proposed -free 
ballistic capture 

ΔV

Initial Gaussian uncertainty at leveraging maneuver Final non-Gaussian uncertainty at Europa arrival

KEY QUESTION: What are the temporal limits of linear filters in the Jovian regime, and 
when might it be necessary to implement nonlinear filters?

• A theoretically -free, ballistic capture of a Europa lander realistically requires statistical maneuvers to 
maintain Gaussian error in position and velocity for linearized navigation techniques

ΔV

McElrath, Tim, et al. "Navigating low-energy trajectories to land on the surface of Europa.” NTRS. (2021)
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Test Model: Low-Earth Orbit (LEO) 
Review of measurement-sparse LEO estimation

Yun, Sehyun, et al. "Kernel-based ensemble gaussian mixture filtering for orbit determination with sparse data.” AdSpR. (2022)

Dynamic Model Description
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Third-Body Perturbations 
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Solar Radiation Pressure
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• Previous work has focused on the efficacy of linear/nonlinear filters applied to LEO trajectories in measurement-
sparse conditions 
✴ Initial condition resulting in highly-inclined, nearly-circular LEO 
✴ Propagated for 6 revolutions (4.94 hours) w/ RK8(7) 
✴ Negligible process noise (Q = 0)

σr = 30 , σv = 0.3m m/s



Monte Carlo Interpretation Particle Filter Interpretation
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Jovian Application: Framework Changes 
Truth Model

• We plan to implement a similar framework as previously shown, applied to trajectories in the Jovian system, with 
the following important changes implemented:

1. Truth Model
✴ A high-resolution particle filter will allow for confidence interval comparison with linear filters, 

providing more information than a high-resolution Monte Carlo distribution

{x} ∼ 𝒩(μ, Σ)
For Monte Carlo/Particle Filter:

{p(x)} ∼ exp {− 1
2 (x − μ)TΣ−1(x − μ)}

For Particle Filter only:
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• We plan to implement a similar framework as previously shown, applied to trajectories in the Jovian system, with 
the following important changes implemented:

2. Distribution Comparison Metric
✴ The metric used to indicate diverge (previously SNEES) should consider the true probability distribution 

is non-Gaussian after enough propagation time without measurements

SNEES = 1
Md

M

∑
j=1

(x( j) − x̂( j))T (Σ̂( j))
−1

(x( j) − x̂( j))

✦ Problem: Assumes Gaussian errors

DKL(P | |Q) = ∑
x∈χ

P(x) log ( P(x)
Q(x) )

✦ Problem: Diverges for extremely low 
probability events when distributions 
differ

Jovian Application: Framework Changes 
Distribution Comparison Metric

UKF

Truth

Gaussian uncertainty propagated with Two-Body Dynamics becoming highly non-Gaussian

SNEES : Scaled Normalized Estimation Error Squared*

DKL : Kullback-Leibler Divergence*
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Jovian Application: Framework Changes 
Propagation Conditions

• We plan to implement a similar framework as previously shown, applied to trajectories in the Jovian system, with 
the following important changes implemented:

3. Propagation Conditions
✴ To test the limits of the linear filters, we plan on performing “measurementless” propagation

✴ Purely two-body dynamics will be propagated, so the following results are likely a best-case scenario

✴ Filter parameters:

✦ Future work will aim to feed the dynamics from an ephemeris-level numerical propagator 

T

x = [a, e, i, Ω, ω, M], ·x = [0, 0, 0, 0, 0, μ
a3 ]

T

✦ We consider negligible process noise  and correct initial measurements (Q = 0) (δx0 = x0 − x̂0 = 0)

Filter Parameters

Particle Filter (truth)          Particles:

UKF

EnKF          Members: 

α = 10−3, β = 2, κ = 0

105

104



p1, [x1, x2, …, xd]1
p2, [x1, x2, …, xd]2
p3, [x1, x2, …, xd]3
p4, [x1, x2, …, xd]4

p5, [x1, x2, …, xd]5

pn, [x1, x2, …, xd]n

⋮⋮ ⋮⋮
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Distribution Comparison Metric 
Choosing a metric for Gaussian/non-Gaussian distribution comparison
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p1, [x1, x2, …, xd]1
p2, [x1, x2, …, xd]2
p3, [x1, x2, …, xd]3
p4, [x1, x2, …, xd]4

p5, [x1, x2, …, xd]5

pn, [x1, x2, …, xd]n

{x}p*{
pthresh = 0.20

pthresh = 0.74

pthresh = 0.971

where

p* =
M

∑
i=1

pi ≤ pthresh

   -Convex Hull Generationα

Edelsbrunner, Herbert, et al. "Three-
dimensional alpha shapes." ACM. (1994)

1D 68% 95% 99.7%

2D 39% 86% 98.9%

3D 20% 74% 97.1%

1σ 2σ 3σ
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Distribution Comparison Metric 
Choosing a metric for Gaussian/non-Gaussian distribution comparison

≡ J(α, β) = |{x ∈ α ∩ β} |
|{x ∈ α ∪ β} |

= |{x ∈ α ∩ β} |
|{x ∈ α} | + |{x ∈ β} | − |{x ∈ α ∩ β} |

Jaccard 
Index

where size of set| ⋅ | =
x ∈ ℝ3

α
β

Distributions of interest Discretization

inAlpha(α, x)

dM = (x − μ)T Σ−1 (x − μ) ≤ k
{x ∈ β}

{x ∈ α}

{x ∈ α ∩ β}

J = 0

J = 1Perfect match

No overlap

J(α, β) ≈ 0.39



10

Jovian Application: Low-Europa Orbit 
Revised framework applied to measurement-sparse Jovian estimation

• Implement linear filter estimation with new comparison framework on Jovian trajectory:  
✴ Initial condition resulting in highly-inclined, low-Europa orbit 
✴ Propagated for 4 revolutions (11.279 hours) w/ RK8(7) 
✴ No measurements and negligible process noise 
✴ -convex hull comparison metricα
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σr = 1 , σv = 1km m/s

Filter Parameters

Particle Filter (truth)          Particles:

UKF

EnKF          Members: 

α = 10−3, β = 2, κ = 0

Lara, Martin, et al. “On the design of a science orbit about Europa.” JPL. (2006) 
Schenk, Paul, et al. "A very young age for true polar wander on Europa from related fracturing." GeoRL. (2020)
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104
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Jovian Application: Low-Europa Orbit 
Evaluating the e!cacy of linear "lters for measurement-sparse estimation

UKF (Cartesian) UKF (Equinoctial) EnKF (Cartesian) EnKF (Equinoctial)

N/A 0.1763 0.0445 0.1727

N/A 0.1414 0.0427 0.1237

N/A 0.1049 0.0366 0.0800

1σ

2σ

3σ

Jr
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Jovian Application: Low-Europa Orbit 
Evaluating the e!cacy of linear "lters for measurement-sparse estimation
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Jovian Application: Low-Europa Orbit 
Evaluating the e!cacy of linear "lters for measurement-sparse estimation

UKF

Truth
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GBEES is a 2nd-order accurate, Godunov finite volume method that treats probability as a fluid, 
flowing the PDF through phase space subject to the dynamics of the system. Because of its 
formulation, it can handle deterministic/stochastic systems while maintaining resolution.

Grid-based Bayesian 
Estimation Exploiting 

Sparsity (GBEES)
An efficient Bayesian estimation 

method for representing and 
propagating uncertainty

Motivation for New Nonlinear Filters 
Addressing the shortcomings of the particle "lter

• To address the shortcomings of the linear filter, we utilize…
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Nonlinear Filter Comparison 
Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)

• GBEES consists of two distinct processes, one performed in continuous-time, the other in discrete-time:

1. The probability distribution function  is continuous-time marched via the Fokker-Planck Equation: px(x′ , t)

∂px(x′ , t)
∂t

= − ∂fi(x′ , t)px(x′ , t)
∂x′ i

+ 1
2

∂2qijpx(x′ , t)
∂x′ i∂x′ j

✴ : advection (EOMs) in the  dimension 
✴ :  element of the spectral density ( , PDE is hyperbolic)

fi ith

qij (i, j)th Q = 0

2. At discrete-time interval , measurement  updates  via 
Bayes’ Theorem: 

tk yk px(x′ , t)

px(x′ , tk+) =
py(yk |x′ )px(x′ , tk−)

C
✴ : a posteriori distribution 
✴ : measurement distribution 
✴ : a priori distribution 
✴ : normalization constant

px(x′ , tk+)
py(yk |x′ )
px(x′ , tk−)
C
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Jovian Application: Three-Body Problem 
Circular Restricted Three-Body Problem (CR3BP)

• We look to apply the developed framework to another systems applicable to Jovian trajectories 

Circular Restricted Three-Body Problem

where Ω(x, y) = x2 + y2

2 + 1 − μ
r1

+ μ
r2

+ μ(1 − μ)
2

x =

x
y
z
vx
vy
vz

, ·x =

vx
vy
vz

2vy + Ωx

−2vx + Ωy

Ωz

✴ We use initial conditions generated from 
the JPL Three-Body Periodic Orbit 
Catalog for the Jupiter-Europa system

Park, Ryan. “Jet Propulsion Laboratory Three-Body Periodic Orbit Catalog.” (2024)
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Jovian Application: Lagrange Point Orbits 

Hanson, Benjamin L., et al. "State Estimation of Chaotic Trajectories: A Higher-Dimensional, Grid-Based, Bayesian Approach to Uncertainty Propagation." AIAA. (2024)

• Previous work applied a similar framework to planar Lyapunov orbits about  in the Jupiter-Europa 3BPL3

Review of measurement-sparse Jovian estimation

• We found that uncertainty remained near Gaussian, even with an infrequent measurement cadence ( 1.17 days)∼



*Europa not to scale

L2
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Jovian Application: Low-Prograde Orbit 
Revised framework applied to measurement-sparse Jovian estimation

• Implement linear filter estimation with new comparison framework on Jovian trajectory:  
✴ Initial condition resulting in eastern, low-prograde orbit about Europa 
✴ Propagated for 14 hours w/ RK8(7) and GBEES 
✴ No measurements and negligible process noise 
✴ -convex hull comparison metricα

=
6.803 × 105

0
0

0.8623

x
y
vx
vy

x0 =

(km)

(km)

(m/s)

(m/s)

Filter Parameters

Particle Filter (truth)           Particles: 

UKF

EnKF           Members:   

GBEES

α = 10−3, β = 2, κ = 0

pthresh = 10−7

106

104

Park, Ryan. “Jet Propulsion Laboratory Three-Body Periodic Orbit Catalog.” (2024)

σr = 100 , σv = 10km m/s

Stastny, Nathan, et al. “Autonomous optical navigation at Jupiter: a linear covariance analysis.” JSpRo. (2024)
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Jovian Application: Low-Prograde Orbit 
Comparing linear estimation with GBEES

UKF EnKF GBEES

0.5678 0.4978 0.6479

0.6514 0.4800 0.6713

0.5492 0.4209 0.7472

1σ

2σ

3σ

Jr
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Jovian Application: Low-Prograde Orbit 
Comparing linear estimation with GBEES

GBEESTruthUKF
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Jovian Application: Low-Prograde Orbit 
Comparing Particle Filter with GBEES

=
Volume of uncertainty

Resolution
# of particles/grid cells

• We utilize a high-resolution PF as a truth distribution, so why don’t we use it for estimation? 

✴ To achieve sufficient resolution at a distant measurement epoch requires a large (usually unknown) 
number of particles that are marched from the previous epoch

✴ GBEES nearly maintains resolution by growing with the uncertainty

To achieve this level of 
final resolution…

…requires this level of 
initial resolution.

Not the case for 
GBEES!
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Conclusion 
Comments on Results and Future Work

• Low-Europa Orbit

• Future Work
✴ Propagating in the slow-changing, three-body local orbit elements 
✴ Parallelization of Riemann solver embedded within GBEES 
✴ Dynamics sourced from an ephemeris-level numerical integrator

✴  position uncertainty estimated by the UKF (Equinoctial) is able to maintain  compared with truth 
distribution for nearly 2 revolutions without measurements, with local minima located at periapsis 
1σ Jr ≥ 0.5

UKF (Cartesian) UKF (Equinoctial) EnKF (Cartesian) EnKF (Equinoctial)
N/A 0.1763 0.0445 0.1727

N/A 0.1414 0.0427 0.1237

N/A 0.1049 0.0366 0.0800

1σ
2σ
3σ

Jr

• Low-Prograde Orbit in Jupiter-Europa Three-Body System

✴ While linear filters are able to estimate uncertainty better when distributions are near-Gaussian, GBEES is 
more accurate when distributions are far from Gaussian, which occurs in about 14 hours for the given LPO

UKF EnKF GBEES

0.5678 0.4978 0.6479

0.6514 0.4800 0.6713

0.5492 0.4209 0.7472

1σ

2σ

3σ

Jr
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All code can be found at: https://github.com/bhanson10/GBEES and 
 https://github.com/bhanson10/KePASSA2024 

Thank you for your time. Questions?

https://github.com/bhanson10/GBEES
https://github.com/bhanson10/KePASSA2024

