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Case Study: Low-Energy Trajectories for Europa Lander

e A theoretically AV-free, ballistic capture of a Europa lander realistically requires statistical maneuvers to
maintain Gaussian error in position and velocity for linearized navigation techniques
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Time validity of the Gaussian assumption of uncertainty
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McFElrath, Tim, et al. "Navigating low-energy trajectories to land on the surface of Furopa.” NTRS. (2021)

KePASSA
2024



Case Study: Low-Energy Trajectories for Europa Lander KePASSA
. .y . : . Q2024
Time validity of the Gaussian assumption of uncertainty

e A theoretically AV-free, ballistic capture of a Europa lander realistically requires statistical maneuvers to
maintain Gaussian error in position and velocity for linearized navigation techniques
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KEY QUESTION: What are the temporal limits of linear filters in the Jovian regime, and
when might it be necessary to implement nonlinear filters!?

McFElrath, Tim, et al. "Navigating low-energy trajectories to land on the surface of Furopa.” NTRS. (2021) 3



Test Model: Low-Earth Orbit (LEO) KePASSA
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Review of measurement-sparse LEO estimation N

e Previous work has focused on the efficacy of linear/nonlinear filters applied to LEO trajectories in measurement-
sparse conditions

* Initial condition resulting in highly-inclined, nearly-circular LEO

* Propagated for 6 revolutions (4.94 hours) w/ RK8(7) a (km) 7,0780068
* Negligible process noise (Q = 0) e () 0.01
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6000 - () 0°
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N 0 -
c,=30 m, 6,=0.3m/s
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_5066"““\\ - o "'5'060 Third-Body Perturbations Sun and Moon
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Yun, Sehyun, et al. "Kernel-based ensemble gaussian mixture filtering for orbit determination with sparse data.” AdSpR. (2022) 4
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Truth Model

e We plan to implement a similar framework as previously shown, applied to trajectories in the Jovian system, with
the following important changes implemented:

. Truth Model

* A high-resolution particle filter will allow for confidence interval comparison with linear filters,
providing more information than a high-resolution Monte Carlo distribution

For Monte Carlo/Particle Filter:

)~ A, 2)

For Particle Filter only:

1 I's—1
{p(x)} ~ exp —E(X—ﬂ) 2 (x —p)

Monte Carlo Interpretation Particle Filter Interpretation
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Distribution Comparison Metric

e We plan to implement a similar framework as previously shown, applied to trajectories in the Jovian system, with
the following important changes implemented:

2. Distribution Comparison Metric
* The metric used to indicate diverge (previously SNEES) should consider the true probability distribution

is non-(zaussian after enough propagation time without measurements

£

M ~1
SNEES = —— Z (x0) — £0)) <g<j>> (x) — £0)

+ Problem: Assumes Gaussian errors

P(x)
Dy (P = P(x) 1
k(P11Q) =) P) 0g<Q(x)>

XEy

+ Problem: Diverges for extremely low Revolutiop, 6
probability events when distributions

differ

Gaussian uncertainty propagated with Two-Body Dynamics becoming highly non-Gaussian

*SNEES : Scaled Normalized Estimation Error Squared

*D,, - Kullback-Leibler Divergence .
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Propagation Conditions

e We plan to implement a similar framework as previously shown, applied to trajectories in the Jovian system, with
the following important changes implemented:

3. Propagation Conditions

* To test the limits of the linear filters, we plan on performing “measurementless’” propagation

+ We consider negligible process noise (Q = 0) and correct initial measurements (0x, = x;, — Xy = 0)

* Purely two-body dynamics will be propagated, so the following results are likely a best-case scenario
] ST i T

x=\|a, e i, Q,  w, M|, x=1(0, 0, 0, 0, O, —
a

+ Future work will aim to feed the dynamics from an ephemeris-level numerical propagator

* Filter parameters:

Filter Parameters
Particle Filter (truth) Particles: 10°
UKF a=107,=2,k=0
EnKF Members: 10*
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Choosing a metric for Gaussian/non-Gaussian distribution comparison N
P pl, :xl,xZ, ...,xd:I O pl’ :xla-xza °°°9-xd:1

g O r KXy X, O p» [PrXe-- X,
) emm ) ) i i
8 g @) p3, _xl,X2, ...,xd_3 ‘ p3, _xlaxza ""xa’~3 {x}

WO _ : : — %
z 5 O p4, hX1,X2, ...,de4 » O p4, hxlaxza °°-9xd~4 p
— _ _
E g ‘ ps, _xl,xZ, ...,xd_s O
O i
A Q.

v

e

B 0O pl’l’ [.Xl, .XZ, cooo Xd]n o pi’l’ [.Xl, x2’ ey Xd]n
where
M

m : Pithresh = 0971 —— p* — Z pl N pthresh
v O i=1
8 W
t S Pthresh = 0.74 10 20 30
= C
92 0 1D 68% 95% 99.7%
8 g Pthresh = 0.20
E a 2D 39% 86% 08.9%

/ . | 3D 20% 74% 97.1%

Edelsbrunner, Herbert, et al. "Three-

dimensional alpha shapes.” ACM. (1994) 8



Distribution Comparison Metric KePASSA

: : : : Coeer - : ) 2024
Choosing a metric for Gaussian/non-Gaussian distribution comparison =
Distributions of interest Discretization
inAlpha(a, x) (xea)

Perfect match WA=

No overlap WASKS,

[x €anp) {(x€eanpl|

| - | = size of set

Jaccard _ _ _ where
mdex ~ P T TR caun T Trealtlmel—lreanp] 0 em
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Revised framework applied to measurement-sparse Jovian estimation N
e Implement linear filter estimation with new comparison framework on Jovian trajectory:
* Initial condition resulting in highly-inclined, low-Europa orbit
* Propagated for 4 revolutions (11.279 hours) w/ RKS&(7
pas s | ) W/ RS a (km) 2029.4809
* No measurements and negligible process noise
* a-convex hull comparison metric e () 0.17
I () 112.3°
1500 Xn = —
0 o
Q () 180
1000 | (o)
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500 M ( ) OO
ER
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-1000 — o
Filter Parameters
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y (km
Lara, Martin, et al. “On the design of a science orbit about Furopa.” JPL. (2006) 0

Schenk, Paul, et al. "A very young age for true polar wander on Europa from related fracturing.” GeoRL. (2020)



Jovian Application: Low-Europa Orbit

Evaluating the efficacy of linear filters for measurement-sparse estimation
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Evaluating the efficacy of linear filters for measurement-sparse estimation
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Evaluating the efficacy of linear filters for measurement-sparse estimation

Truth

URF

12



Motivation for New Nonlinear Filters (PASSA
Addressing the shortcomings of the particle filter N

e To address the shortcomings of the linear filter, we utilize...

Grid-based Bayesian
Estimation Exploiting

Sparsity (GBEES)

An eflicient-Bayesian estimation
method for representing and
propagating uncertainty

GBEES is a 2nd-order accurate, Godunov finite volume method that treats probability as a fluid,
flowing the PDF through phase space subject to the dynamics of the system. Because of its

formulation, it can handle deterministic/stochastic systems while maintaining resolution. 3



Nonlinear Filter Comparison (PASSA
Grid-based Bayesian Estimation Exploiting Sparsity (GBEES) b

e GB.

&

ES consists of two distinct processes, one performed in continuous-time, the other in discrete-time:

1. The probability distribution function p(X’,7) is continuous-time marched via the Fokker-Planck Equation:

(X1 _ X 0pxs ) ] 0”q;p(X', 1)
o 0x; 2 Ox/ox]

l

* f: advection (EOMs) in the iR dimension
x g, (I, j)th element of the spectral density (Q = 0, PDE is hyperbolic)

2. At discrete-time interval f,, measurement y, updates p. (X', f) via
Bayes’ Theorem:

py(Yk ‘ X,)px(X,a tk—)
C

px(X,a ZLk+) —

* p (X', 1,,): a posteriori distribution
* py(¥i | X"): measurement distribution
* p (X', 1,_): a priori distribution
* C: normalization constant
| 4



Nonlinear Filter Comparison (PASSA
Grid-based Bayesian Estimation Exploiting Sparsity (GBEES) b

e GBEES consists of two distinct processes, one performed in continuous-time, the other in discrete-time:

&

1. The probability distribution function p(X’,7) is continuous-time marched via the Fokker-Planck Equation:

(X 1) _ X0 xi ) ] 0”q;p(X', 1)
o 0x; 2 ox/ox]

* f: advection (EOMs) in the i*N dimension
x g, (I, j)th element of the spectral density (Q = 0, PDE is hyperbolic)

2. At discrete-time interval f,, measurement y, updates p. (X', f) via 30 .
Bayes’ Theorem: 20 |

py(Yk ‘ X,)px(X,a tk—)
C -10

-20

px(X ,9 tk+) —

* p (X', 1,,): a posteriori distribution

-30 .
* py(¥i | X"): measurement distribution 2
* p (X', 1,_): a priori distribution 2 T o o
* C: normalization constant

A priori
P 14



Nonlinear Filter Comparison (PASSA
Grid-based Bayesian Estimation Exploiting Sparsity (GBEES) b

e GBEES consists of two distinct processes, one performed in continuous-time, the other in discrete-time:

&

1. The probability distribution function p(X’,7) is continuous-time marched via the Fokker-Planck Equation:

(X 1) _ X0 xi ) ] 0”q;p(X', 1)
o 0x; 2 ox/ox]

* f: advection (EOMs) in the iR dimension
x g, (I, j)th element of the spectral density (Q = 0, PDE is hyperbolic)

2. At discrete-time interval f,, measurement y, updates p. (X', f) via 30 .
Bayes’ Theorem: 20 |

py(Yk ‘ X,)px(x,a tk—)
C -10

px(X ,9 ZLk+) —

* p (X', 1,,): a posteriori distribution

* py(yk|X’): measurement distribution 20
* p (X', 1,_): a priori distribution 2 T o o
x (C: normalization constant

A priori X Measurement y



Nonlinear Filter Comparison KePASSA
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Grid-based Bayesian Estimation Exploiting Sparsity (GBEES) ¥
e GBEES consists of two distinct processes, one performed in continuous-time, the other in discrete-time:
1. The probability distribution function p(X’,7) is continuous-time marched via the Fokker-Planck Equation:
2 /
/ / /
op (X', 1) of.(X', p (X', ) .\ 1 0°g;px(X, 1)
ot 0X; 2 Ox;0x;
* f: advection (EOMs) in the iR dimension
x g, (I, j)th element of the spectral density (Q = 0, PDE is hyperbolic)
2. At discrete-time interval f,, measurement y, updates p. (X', f) via 3.
Bayes’ Theorem: 20 |
/ / 10 -
( , ) py(Yk ‘ X )px(X ’ tk—) "
pX X ? tk"‘ — 10
C ~
* p (X', 1,,): a posteriori distribution -
* py(¥i | X"): measurement distribution &l
* p (X', t,_): a priori distribution DS T 0 0 o
* C: normalization constant . .
A priori X Measurement = A posteriori

| 4



Jovian Application: Three-Body Problem KePASSA
Circular Restricted Three-Body Problem (CR3BP) -

e We look to apply the developed framework to another systems applicable to Jovian trajectories

zZ

Circular Restricted Three-Body Problem

] S/C
Y Yy
Z VZ 2
Y= T 2w+, L, ’
Vy —2Vx + Qy
VZ QZ 1
X4y l—p op ol —p) g
where Q(x,y) = + TRl

2 I I 2

* We use initial conditions generated tfrom
the JPL Three-Body Periodic Orbit
Catalog for the Jupiter-Europa system

Park, Ryan. “Jet Propulsion Laboratory Three-Body Periodic Orbit Catalog.” (2024) 15
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Review of measurement-sparse Jov1an estimation =
e Previous work applied a similar framework to planar Lyapunov orbits about L; in the Jupiter-Europa 3BP
<10
6 Nominal (£ Nominal
' & GBEES 10l & GBEES
* MC — | ® MC
4l . |
5 -
2 -
)
7~ E O 5
.E 0 K o g
: Jupiter Europa >%
5t

2k

4 b -10 |

-0 1 dl | 1 1 | | 1 | ! | 1 |

0 8 € 4 a2 0 2 4 6 3 10 -8 6 -4 2 0 2 4 6 8 10
X (km) <10’ v, (km/s)

e We found that uncertainty remained near Gaussian, even with an infrequent measurement cadence (~1.17 days)

Hanson, Benjamin L., et al. "State Estimation of Chaotic Trajectories: A Higher-Dimensional, Grid-Based, Bayesian Approach to Uncertainty Propagation.” AIAA. (2024) 16
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Revised framework applied to measurement-sparse Jovian estimation

e Implement linear filter estimation with new comparison framework on Jovian trajectory:

* Initial condition resulting in eastern, low-prograde orbit about Europa
* Propagated for 14 hours w/ RK8(7) and GBEES

* No measurements and negligible process noise X (km) 6.803 % 1()5
* a-convex hull comparison metric y (km) O
4000 | - x (m/s) 0
3000 - V
y (/9 0.8623
2000
1000 -
— o, = 100 km, 6, = 10m/s
= ol o
< ’
-— L2 :
> 1000 | ,' Filter Parameters
l
-2000 | Particle Filter (truth) Particles: 10°
/
-3000 /
/ UKF a=10"3, =2 k=0
4000 | - — _ e
*Europa not to scale T T T —— ~
| | ' ' ' ' ' ' EnKF Members: 10*
6.68 6.7 6.72 6.74 6.76 6.78 6.8 6.82
z (km) x10° .
GBEES Pihresh = 10~

Park, Ryan. “Jet Propulsion Laboratory Three-Body Periodic Orbit Catalog.” (2024)

Stastny, Nathan, et al. “Autonomous optical navigation at Jupiter: a linear covariance analysis.” JSpRo. (2024) |7



Jovian Application: Low-Prograde Orbit KPASSA
Comparing linear estimation with GBEES >
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0.7 | —&— UKF - 1o
—3— UKF - 20
" —&— UKF - 30
~ 0.6 — | - &— EuKF - 10
—F— EnKF - 2¢
EnKF - 3¢
0.5 — |——GBEES- 1o
—{3— GBEES - 2¢
&5 GBEES - 30
04
13

l oy AN
/A e sl &
. = =
; - £ e —

RA
- — {.
09 —T =4 —— =
‘ —5— UKF - 20 N T
—&— UKF - 3 =N\
~5 0.7 — ’ A
—&— EnKF - 1o =
S

—F— EnKF - 20
0.6 — —e— EnKF - 30

—>— GBEES - 10

0.5 — |—— GBEES - 2¢
—{>— GBEES - 3¢

0.4
| | | | | | | | | | | | | | | | | | | | | | | | |
o 05 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 8 9 95 10 105 11 115 12 125 13 135 14

Time Past Epoch (hours)

7
/|

KD lib/

J, UKF EnKF GBEES
lo 0.5678 0.4978 0.6479
20 0.6514 0.4800 0.6713
30 0.5492 0.4209 0.7472

|18
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Comparing linear estimation with GBEES
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Jovian Application: Low-Prograde Orbit (EPASSA
Comparing Particle Filter with GBEES >

e We utilize a high-resolution PF as a truth distribution, so why don’t we use it for estimation?

* To achieve sufficient resolution at a distant measurement epoch requires a large (usually unknown)
number of particles that are marched from the previous epoch

3 = GBEES

...requires this level of

251 iitial resolution.

+# of particles/grid cells

Resolution

Resolution —
Volume of uncertainty 1.5+
To achieve this level of
1 — f. h )
inal resolution...
Not the case for
GBEES! 051
£\
\/VOJ 8 58— 8——8 = = = = ; \:‘J'% 8 !A @ 0
0 2 4 6 8 10 12 14
Time Past Epoch (hours)
* GBEES nearly maintains resolution by growing with the uncertainty

20



Conclusion KePASSA
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Comments on Results and Future Work

* Low-Europa Orbit

J, UKF (Cartesian) UKF (Equinoctial) EnKF (Cartesian) EnKF (Equinoctial)
lo N/A 0.1763 0.0445 0.1727
20 N/A 0.1414 0.0427 0.1237
30 N/A 0.1049 0.0366 0.0800

* lo position uncertainty estimated by the UKF (Equinoctial) is able to maintain J. > 0.5 compared with truth
distribution for nearly 2 revolutions without measurements, with local minima located at periapsis

* Low=-Prograde Orbit in Jupiter-Europa Three-Body System

J. UKF EnKF GBEES
lo 0.0678 0.4978 0.6479
20 0.6014 0.4800 0.6713
30 0.5492 0.4209 0.7472

* While linear filters are able to estimate uncertainty better when distributions are near-Gaussian, GBEES is
more accurate when distributions are far from (Gaussian, which occurs in about 14 hours for the given LPO

 Future Work

*x Propagating in the slow-changing, three-body local orbit elements

—

¥ Parallelization of Riemann solver embedded within GBEES

* Dynamics sourced from an ephemeris-level numerical integrator )
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Thank you for your time. Questions?
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