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Case Study: Low-Energy Trajectories for Europa Lander  
Time validity of the Gaussian assumption of uncertainty

• A theoretically -free, ballistic capture of a Europa lander realistically requires statistical maneuvers to 
maintain Gaussian error in position and velocity for linearized navigation techniques

ΔV

Proposed -free 
ballistic capture 

ΔV

Actual trajectory 
with statistical 
maneuvers ΔVi

McElrath, Tim, et al. "Navigating low-energy trajectories to land on the surface of Europa.” NTRS. (2021)
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Case Study: Low-Energy Trajectories for Europa Lander  
Time validity of the Gaussian assumption of uncertainty

Proposed -free 
ballistic capture 

ΔV

Initial Gaussian uncertainty at leveraging maneuver Final non-Gaussian uncertainty at Europa arrival

Key question: What are the temporal limits of Gaussian filters in the Jovian regime (or 
elsewhere), and when might it be necessary to implement non-Gaussian filters?

• A theoretically -free, ballistic capture of a Europa lander realistically requires statistical maneuvers to 
maintain Gaussian error in position and velocity for linearized navigation techniques

ΔV

McElrath, Tim, et al. "Navigating low-energy trajectories to land on the surface of Europa.” NTRS. (2021)
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Current Landscape of Recursive Bayesian Filters
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Grid-based Bayesian 
Estimation Exploiting 

Sparsity (GBEES)
An efficient Bayesian estimation 

method for representing and 
propagating uncertainty

Motivation for New Non-Gaussian Filter

• To address the shortcomings of Gaussian filters, we utilize…

• GBEES is a 2nd-order accurate, Godunov finite volume method that treats probability as a fluid, flowing 
the PDF through phase space subject to the dynamics of the system 

• Can handle deterministic/stochastic systems while maintaining resolution
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Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)

• GBEES consists of two distinct processes, one performed in continuous-time, the other in discrete-time:

1. The probability distribution function  is continuous-time marched via the Fokker-Planck Equation: px(x′ , t)

∂px(x′ , t)
∂t

= − ∂fi(x′ , t)px(x′ , t)
∂x′ i

+ 1
2

∂2qijpx(x′ , t)
∂x′ i∂x′ j

✴ : advection (EOMs) in the  dimension 
✴ :  element of the spectral density ( , PDE is hyperbolic)

fi ith

qij (i, j)th Q = 0

2. At discrete-time interval , measurement  updates  via Bayes’ Theorem: tk yk px(x′ , t)

px(x′ , tk+) =
py(yk |x′ )px(x′ , tk−)

C
✴ : a posteriori distribution 
✴ : measurement distribution 
✴ : a priori distribution 
✴ : normalization constant

px(x′ , tk+)
py(yk |x′ )
px(x′ , tk−)
C
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Continuous-time

x = [
x
y
z], dx

dt
=

σ(y − x)
−y − xz

−b(z + r) − xy

Discrete-time

P(A |B) = P(B |A) P(A)
P(B)

a priori

Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)

Bewley, Thomas, et al. "Efficient grid-based bayesian estimation of nonlinear low-dimensional systems with sparse non-gaussian pdfs.” Automatica. (2012)
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Bewley, Thomas, et al. "Efficient grid-based bayesian estimation of nonlinear low-dimensional systems with sparse non-gaussian pdfs.” Automatica. (2012)

x = [x
y], h(x) = |x |

n = nparticles grid cells
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Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)

• Consider a 1-dimensional, linear test example:

x = [x], dx
dt

= [a], a > 0

How does , governed by , change with respect to ?p(x) dx/dt t

• Initial observation of  results in a Gaussian PDF  centered about  with standard deviation x(t) p(x) x0 σ

x

p(x)

x0

σ

a
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Ignoring sparsity

Exploiting sparsity

Not GBEES, just a visual aid

Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)
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General Formulation 
Godunov Upwind Scheme - Fully Discretized, 2nd-order, Taylor Approximation

• A Godunov-type finite volume method implemented on a uniform Cartesian 2D mesh 

(i, j) (i + 1,j)

(i + 1,j + 1)

(i + 1,j − 1)

(i − 1,j)

(i − 1,j + 1)

(i − 1,j − 1)

(i, j + 1)

(i, j − 1)

Δx

Δy

t = n

Fi−1/2, j Fi+1/2, j

G i
,j+

1/
2

G i
,j+

1/
2

pn+1
i,j − pn

i,j

Δt
= −

Fn
i+1/2,j − Fn

i−1/2,j

Δx
−

Gn
i,j+1/2 − Gn

i,j−1/2

Δy
• : probability at time step  at cell  
• : probability at time step  at cell  
• : size of time step 
• : flux a half grid length back in the x-direction 
• : flux a half grid length forward in the x-direction 
• : flux a half grid length back in the y-direction 
• : flux a half grid length forward in the y-direction 
• : x-grid width 
• : y-grid width

pn+1
i,j n + 1 (i, j)

pn
i,j n (i, j)

Δt
Fn

i−1/2,j
Fn

i+1/2,j
Gn

i−1/2,j
Gn

i+1/2,j
Δx
Δy

Instead of flux being a function of volume and 
advection, flux is a function of probability and the 

equations of motion!



GOAL: FIND PRACTICAL TRAJECTORIES WHERE ORBITAL 
UNCERTAINTY BECOMES NON-GAUSSIAN AND APPLY RBFS



12

Astrodynamic Applications: Three-Body Problem 
Circular Restricted Three-Body Problem (CR3BP)

• We look to apply the developed framework to orbital uncertainty propagation

Circular Restricted Three-Body Problem

where Ω(x, y) = x2 + y2

2 + 1 − μ
r1

+ μ
r2

+ μ(1 − μ)
2

x =

x
y
z
·x
·y
·z

, ·x = f(x) =

·x
·y
·z

2·y + Ωx
−2 ·x + Ωy

Ωz

• We use initial conditions generated from the JPL Three-Body Periodic Orbit Catalog

Park, Ryan. “Jet Propulsion Laboratory Three-Body Periodic Orbit Catalog.” (2024)
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Astrodynamic Applications: Three-Body Problem 
GBEES Jacobi Bounding

• One integral of motion exists for the CR3BP 

• GBEES is a 2nd-order accurate numerical scheme, so  is not necessarily conserved 
• Instead, we hardcode this requirement into the grid creation

C

C(x, y, z, ·x, ·y, ·z) = x2 + y2 + 2(1 − μ)
r1

+ 2μ
r2

+ μ(1 − μ) − ·x2 − ·y2 − ·z2

✴ When ,  is 
the zero-velocity curves  

✴ Phase space is discretized as 
would be done for GBEES

·x = ·y = ·z = 0 C
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Astrodynamic Applications: Three-Body Problem 
GBEES Jacobi Bounding

• One integral of motion exists for the CR3BP 

C(x, y, z, ·x, ·y, ·z) = x2 + y2 + 2(1 − μ)
r1

+ 2μ
r2

+ μ(1 − μ) − ·x2 − ·y2 − ·z2

• GBEES is 2nd-order accurate, so  is not necessarily conserved numerically 
• Instead, we hardcode this requirement into the grid creation

C

✴ For the initial PDF, there exists a 
 and a  

✴ We ensure that all grid cells that are 
created in the propagation period are 
between these bounds

min(C) max(C)

C C

p(
C

)

p(
C

)

V V V V(C
)

(C
)

(C
)

(C
)
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Circular Restricted Three-Body Problem (CR3BP) 
Distant Prograde Orbits

• A family of planar, -centered, stable/unstable periodic orbits that emerge from the dynamics of the CR3BP are 
Distant Prograde Orbits (DPOs)

P2

Gupta, Maaninee et al. “Earth-Moon multi-body orbits to facilitate cislunar surveillance activities.” AIAA/AAS. (2021)
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Circular Restricted Three-Body Problem (CR3BP) 
Distant Prograde Orbits

Henon, Michel. “Numerical exploration of the restricted problem, V.” AAP. (1969)

• A family of planar, -centered, stable/unstable period orbits that emerge from the dynamics of the CR3BP are 
Distant Prograde Orbits (DPOs)

P2

Stability is a function of C
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Circular Restricted Three-Body Problem (CR3BP) 
Distant Prograde Orbits

• A family of planar, -centered, stable/unstable period orbits that emerge from the dynamics of the CR3BP are 
Distant Prograde Orbits (DPOs)

P2

DPOs serve as heteroclinic link between  and  Lyapunov orbitsL1 L2

Gupta, Maaninee et al. “Earth-Moon multi-body orbits to facilitate cislunar surveillance activities.” AIAA/AAS. (2021)
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Astrodynamic Applications: Three-Body Problem 
DPO uncertainty propagation conditions

• We choose an unstable DPO in the Saturn-Enceladus system for testing GBEES and other selected RBFs

(LU)
(LU)
(LU)x0 =

1.001471
−1.751810E − 5

0.0
7.198783E − 5
1.363392E − 2

0.0

(LU/TU)
(LU/TU)
(LU/TU)

1.9011E-7

LU (km) 238529

TU (s) 18913

T (hr) 19.5811

C 3.000078

SI 3.0187E+2

μ



19

Astrodynamic Applications: Three-Body Problem 
DPO uncertainty propagation conditions

• We choose an unstable DPO in the Saturn-Enceladus system for testing GBEES and other RBFs of note

y =
ρ
θ
·ρ

= h(x) =

(x − 1 + μ)2 + y2

tan−1( y
x − 1 + μ )

(x − 1 + μ) ·x + y ·y
ρ

20.0

1.74533E-2

2.0E-3

4.895

σρ0

σ ·ρ0

σθ0

Δty

(km)

(km/s)

(rad)

(hr)
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Saturn-Enceladus Distant Prograde Orbit Propagation 
GBEES compared with other RBFs

Notes
• Coordinates are in the synodic frame 
• The true PDFs propagated by GBEES are 

4D — these PDFS are the 4D ones 
integrated over velocity/position for 
visualization of the 2D position/velocity 
PDFs 

• A change in color indicates a measurement 
update, with four occurring over this 
propagation period 
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Saturn-Enceladus Distant Prograde Orbit Propagation 
GBEES compared with other RBFs
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Saturn-Enceladus Distant Prograde Orbit Propagation 
Non-Gaussian metric of comparison

• How do we compare the accuracy of these highly non-Gaussian distributions? 

• A non-normal measure of the dissimilarity of distributions — the Bhattacharyya Coefficient

BC(P, Q) = ∑
x∈χ

P(x) Q(x)

•  indicates perfect overlap while  indicates no overlapBC(P, Q) = 1 BC(P, Q) = 0

where 0 ≤ BC(P, Q) ≤ 1

Fukunaga, Keinosuke, Introduction to statistical pattern recognition. Elsevier. (2013)

<<
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Saturn-Enceladus Distant Prograde Orbit Propagation 
Non-Gaussian metric of comparison
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Saturn-Enceladus Distant Prograde Orbit Propagation 
Non-Gaussian metric of comparison

n = 10
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Saturn-Enceladus Distant Prograde Orbit Propagation 
Non-Gaussian metric of comparison

n = 10
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Saturn-Enceladus Distant Prograde Orbit Propagation 
Non-Gaussian metric of comparison

n = 10
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Saturn-Enceladus Distant Prograde Orbit Propagation 
Non-Gaussian metric of comparison

n = 10

BC(P, Q) = 0.1762
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Saturn-Enceladus Distant Prograde Orbit Propagation 
Non-Gaussian metric of comparison

• As expected, GBEES performs best 
in this 2D test problem 

• The GBEES update step is just the 
truth update step, just at a lower 
refinement
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Saturn-Enceladus Distant Prograde Orbit Propagation 
Quantitative comparison

PF

14.149 km

105.631 km

3.961e-3 km/s

3.016e-2 km/s

0.937

0.713
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Saturn-Enceladus Distant Prograde Orbit Propagation 
Quantitative comparison

PF

N
or

m
al

iz
ed
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om

pu
ta

tio
n 

tim
e 14.149 km

105.631 km

3.961e-3 km/s

3.016e-2 km/s

0.937

0.713



GOAL: EMBED MONTE WITHIN GBEES FOR EPHEMERIS-
QUALITY ORBITAL UNCERTAINTY PROPAGATION
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Monte Python Wrapper

• For computational efficiency, GBEES runs in C — embedding Monte within GBEES requires a Python wrapper

GBEES
filetype = .c

Monte 
Universe

filetype = .boa

Order of Operations
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>> boa = Monte.BoaLoad(“MonteUniverse.boa”)

2. Dynamically link Wrapper.py to GBEES.so 

>> lib = ctypes.CDLL(“GBEES.so")

4. Run GBEES with Monte by passing the .boa to the 
linked library

>> lib.run_gbees(boa)

http://gbees.so
http://GBEES.so
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Saturn-Enceladus Distant Prograde Orbit Propagation 
Monte vs. Analytical comparison - accuracy 

• We compare the PDFs when propagating GBEES with the analytical solution to the CR3BP vs. when propagating 
GBEES with dynamics sourced from Monte

Analytical Monte
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Saturn-Enceladus Distant Prograde Orbit Propagation 
Monte vs. Analytical comparison - e!ciency 

• We compare the computation time when propagating GBEES with the analytical solution to the CR3BP vs. 
when propagating GBEES with dynamics sourced from Monte

• There are still some bugs to fix here!



CONCLUSIONS
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Conclusions

• There exist favorable trajectories in deep space where uncertainty may realistically become non-Gaussian

• For these trajectories, with nonlinear measurement updates, Gaussian filters tend to diverge 
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Conclusions

• GBEES proves to be an accurate, robust, and efficient alternative to the landscape of non-Gaussian RBFs

• Up next: higher-dimensional systems, parallelization, and ephemeris models (oh my!)
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GBEES can be found at: https://github.com/bhanson10/GBEES 

Thank you for your time. Questions?

https://github.com/bhanson10/GBEES

