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ABSTRACT
This paper presents a continuous-time framework for modeling the evolution of a
probability density function (PDF) summarizing the region of interest (ROI) during
the search for a stochastically-moving, statistically stationary target. This frame-
work utilizes a Fokker-Planck partial differential equation representing the evolu-
tion of this PDF subject to: diffusion modeling the spread of the PDF due to the
random motion of the target, advection modeling the relaxation of the PDF back
to a specified steady profile summarizing the ROI in the absence of observations,
and observations substantially reducing the PDF within the vicinity of the search
vehicles patrolling the ROI. As a medium for testing the proposed search algorithm,
this work defines a new, more general formulation for the multivariate Generalized
Gaussian Distribution (GGD), an extension of the Gaussian Distribution described
by shaping parameter β. Additionally, we define a formulation with enhanced flexi-
bility, the Generalized Gaussian Distribution with Anisotropic Flatness (GGDAF).
Two techniques are explored that convert a set of target location observations into
a steady-state PDF summarizing the ROI of the target, wherein the steady-state
advection is numerically solved for. This work thus provides a novel framework for
the probabilistic search of stochastically-moving targets, accommodating both non-
evasive and evasive behavior.

KEYWORDS
Probabilistic search; Fokker-Planck equation; generalized Gaussian distribution;
anisotropic flatness

1. Introduction

Probabilistic search techniques (that is, methods that model uncertainty distributions
when searching for targets, and route search vehicles accordingly) are essential for max-
imizing the effectiveness of search efforts. Approximately stated, such searches must
appropriately balance the competing goals of maximizing the probability of finding the
target quickly and ensuring that the target is found eventually. Techniques that focus
on the discovery of stationary objects [1,2] update the uncertainty of a motionless
target via observations by mobile agents, and consider cases where the observations
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taken may be inaccurate (i.e., false positives and false negatives). Other techniques
that consider stochastically-moving targets model the state of the target, rather than
its probability distribution, and evolve that state randomly, then compare different
searching strategies via a “probability of capture” metric that is approximated by a
frequentist approach [3–5]. In contrast, the present work models the time evolution
of the probability density function (PDF) representing the region of interest (ROI)
via the Fokker-Planck partial differential equation (PDE), thus providing a represen-
tative model appropriate to guide the search for stochastically-moving targets. This
PDF evolution procedure could be utilized as the base for other probabilistic search
techniques where more detailed considerations are incorporated, such as detection in-
accuracy, trajectory optimization, and optimal search termination conditions [6,7].

The framework we employ in this paper makes the assumption that the location
of the target is constrained to a static domain space. To support the validity of this,
we note that it is well documented that predators often hunt over defined territo-
ries, which they defend against the incursion of other predators [8]. Herbivores often
forage over similarly defined territories, often referred to as their stable home range
[9,10]. Furthermore, the natural behaviors of many organisms over specific temporal
scales result in invariant probability measures, i.e. the stochastic location of the or-
ganism is a statistically stationary process [11,12]. In this paper, it is assumed that
this phenomena, known as locational stationarity, accurately describes the ROI of the
proposed target over the expected temporal scale. While the location of said target at
any specific time may be unknown, and its movement over ROI modeled as “random”,
information about this ROI may be used to effectively guide a search. Today, rarely
is such information utilized to carry out a search optimally; consider, e.g., the $100M
F-35B aircraft that was lost by the US Marines in the woods of South Carolina on
Sep 17, 2023 [13]. The consequential search for this lost, highly sensitive government
asset, which lasted over 24 hours, involved multiple search vehicles flying overlapping
“lawnmower” search trajectories (i.e., simple linear paths that go and and back over
long stretches, as illustrated in Figure 1). This search pattern was far from optimal,
potentially delaying the recovery of this highly sensitive asset by many hours, with
potentially severe consequences.

This work considers the problem of searching for stochastically-moving, statistically
stationary targets displaying either non-evasive behavior, where the presence of the
search vehicles have no effect on the motion of the target, or evasive behavior, where
the target is privy to the presence of the search vehicles, thus directly impacting its
motion. In the search for the stochastically-moving target, observations that do not find
the target along a certain search path suppress the likelihood of the target being near
that search path for a while, but due to the motion of the target, the likelihood of the
target being in that region relaxes back after a period of time after the search vehicles
moves on; this relaxation of the ROI back towards p̄(x) is captured appropriately by
the advection term in the Fokker-Planck PDE developed and tested in this work.

Our probabilistic search method can be summarized as follows: search vehicles are
directed to traverse the ROI, taking (visual, infrared, audio, etc.) observations in the
vicinity of their trajectories. At these vicinites, p̄(x) is reduced as a function of the
acuity and scope of the search vehicle. As the purpose of our framework is demon-
strating the evolution of the PDF, we assume that all observations fail to locate the
target, and terminate the simulation after a set time, rather than waiting for discovery
or a terminal condition. For non-evasive targets, the relaxation advection v̄(x) is pro-
portional to the rate at which the observations lose confidence; that is, the advection
term forces the probability back to the “mowed down” spots where the search vehicles
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Figure 1. Search trajectory of CAP3935, one of the U.S. Air Force Civil Air Patrol planes tasked with

searching for the lost F-35, from 2:17 PM UTC to 7:23 PM UTC on Sep 18, 2023 over South Carolina [14].

have recently been. We assume that the diffusion D is homogeneous and isotropic,
i.e. the random fluctuations of the target are uncorrelated and constant with respect
to space. For evasive targets, we model the evasive advection ṽ(x, t) as a function of
the positions and disruptivities of the search vehicles, meant to represent the target
being “scared off” by the encroaching vehicles, in addition to the relaxation advection
v̄(x). In this case, the diffusion of the target D(x, t) is no longer homogeneous, as
the magnitude of “agitation” changes depending on the distances the search vehicles
are from the target. Using a cooperative herding technique, we illustrate an effective
method for converging the target probability density, thus increasing probability of
discovery in the vicinity of the search vehicles.

To define the ROI of a target, we consider two scenarios: first, the ROI may be well-
approximated by an analytical distribution, and second, numerous observations of said
target may be aggregated to numerically define the ROI. In the analytical regime, we
specifically consider the Gaussian Distribution and its lesser-known generalization.
The Gaussian (a.k.a normal) Distribution (GD), originally defined by Gauss [15] in
1823, is often considered when representing the randomness of natural phenomena,
characterized by a PDF of the form

p(x |µ,Σ) = 1

(2π)
d

2 |Σ|
1

2

exp

{
− 1

2
(x− µ)TΣ−1(x− µ)

}
(1)

where x ∈ Rd is the random state vector, µ ∈ Rd is the mean of x and Σ ∈ Rd×d is
the covariance of x. It follows from this definition that the zeroth, first, and second
central moments of the GD are

1 =

∫
Rd

p(x |µ,Σ) dx, E[x] = µ, and E[(x− µ)(x− µ)T ] = Σ, (2)

respectively.
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The univariate generalized extension of the GD, with a shaping parameter β that
controls the “peakedness” of the distribution, later dubbed the Generalized Gaussian
Distribution (GGD), was established by Subbotin in 1923 [16]. The bivariate GGD
PDF was introduced by Taguchi in 1978 [17], and later used for adaptive modeling
in video coding in 1996 [18]. Both these formulations adhere to the central moment
definitions given by (2). A multivariate extension of the GGD was then proposed by
Gómez et al [19] in 1998 wherein the second central moment, or covariance, is no longer
equal to the matrix Σ, thus diminishing the “generalization” denotation. Moreover, this
specific multivariate GGD definition has been widely perpetuated by other sources in
the literature and even utilized in the bivariate case over Taguchi’s definition [20–22].
In this paper, along with the primary objective of defining a novel probabilistic search
technique, we aim to reformulate the multivariate GGD such that its covariance is the
input matrix Σ, as is the case for the GD. We also introduce a novel distribution that
allows for different shaping parameters along different eigenvectors of the covariance
of the GGD, dubbed the Generalized Gaussian Distribution with Anisotropic Flatness
(GGDAF).

The additional flexibility of the GGD is the shape parameter β, which may be
utilized to more easily represent sharp peaks and flat tops. This idea is extremely per-
tinent in the fields of Gaussian Mixture Modeling (GMM) and Gaussian Sum Filtering
(GSF) [23–26], wherein non-Gaussian uncertainty is approximated as a collection of
Gaussian Distributions. Representing a nominal distribution with fewer (Generalized)
Gaussians provides a distinct speedup in computation time. Generalized Gaussian
Mixture Modeling (GGMM) and Generalized Gaussian Sum Filtering (GGSF) have
been pursued [27–29], but rarely in multivariate form and never with our proposed
formulation. By ensuring that the second central moment of the GGD is equal to
the input matrix Σ, we theorize that the parameter estimation techniques that ini-
tialize GMM/GSF implementations, such as the Expectation-Maximization algorithm
[30,31], may have closed-form update solutions for Σ, which is not currently the case.
GGMM/GGSF is not pursued further in this paper.

2. Problem formulation

We focus in this paper on the class of problems in which the target of interest is
stochastically-moving within a specified ROI Ω ∈ Rd that is statistically stationary. In
such problems, the distribution of likely locations of this target within this ROI, as-
suming no measurements are available, is modeled as a steady PDF p̄(x), i.e. the target
displays locational stationarity. When performing a “probabilistic search”, search ve-
hicles modify this PDF over time, suppressing the likelihood of discovery of the target
near the path recently traveled by the search vehicles, assuming the target is not dis-
covered by the search vehicles (otherwise, the search is over). This time-varying PDF
is denoted p(x, t) ≥ 0 for all x and t, with

∫
p(x, t) dx = 1 for all t, and p(x, t) → 0

for |x| → ∞ for any t.
In the case of non-evasively moving targets, the motion of the search vehicles does

not change the motion of the target, and as time passes, away from the search vehicles,
the PDF p(x, t) ≥ 0 relaxes back to its steady-state. This relaxation back to p̄(x) is
achieved via the combined effects of advection field v̄(x) and the symmetric diffusion
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tensor D(x) ∈ Rd×d > 0 in the Fokker-Planck PDE [32–34]

∂ p(x, t)

∂t
+

n∑
i=1

∂ [vi(x) p(x, t)]

∂xi
=

n∑
i=1

n∑
j=1

∂2 [Di,j(x) p(x, t)]

∂xi ∂xj
,

where vi(x) is the i
th component of the advection v(x) and Di,j(x) is the (i, j)th com-

ponent of the diffusion tensor D(x). This equation may be written in Gibbs notation
as

∂ p(x, t)

∂t
= −∇x ·

[
v(x) p(x, t)

]
+∇x ·

[
D(x)∇x p(x, t) + p(x, t)∇x ·D(x)

]
= ∇x ·

[
D(x)∇x p(x, t) + p(x, t)∇x ·D(x)− v(x) p(x, t)

]
,

(3)

where ∇x is the vector differential operator with respect to x.
We now set out to derive v̄(x) as a function of D(x) and p̄(x, t) such that, applying

the advection and diffusion of the Fokker-Planck PDE (3) to an arbitrary PDF relaxes
it to p̄(x) (from hereon, we denote a variable relating to the process of relaxation with
a bar, i.e. ā). Once derived, we provide example simulations of the relaxation advection
derived for various steady-state distributions in action.

Steady-state is achieved when the RHS in (3) is zero [35]; it is thus seen that the
advection field v̄(x) that eventually relaxes the PDF p(x, t), governed by (3), towards
a specified steady-state distribution p̄(x) is given by

v̄(x) =
1

p̄(x)
D(x)∇x p̄(x) +∇x ·D(x). (4)

When D is homogeneous (not a function of x), (4) simplifies to v̄(x) = 1
p̄(x)D∇x p̄(x).

For homogeneous isotropic diffusionD = λ I where λ ∈ R, a common special case, v̄(x)
can be defined as the gradient of a scalar potential function ϕ̄(x), v̄(x |λ) = ∇x ϕ̄(x |λ).
It follows that

ϕ̄(x |λ) = λ ln
(
p̄(x)

)
; (5)

note that v̄(x |λ) is everywhere oriented orthogonal to the local isocontour of ϕ̄(x |λ),
in the direction of steepest ascent.

3. The Gaussian Distribution (GD) and corresponding relaxation
advection

The Gaussian Distribution, denoted N (x |µ,Σ) [15], is defined by a PDF of the form

p(x |µ,Σ) = 1

(2π)
d

2 |Σ|
1

2

exp

{
− 1

2
(x− µ)TΣ−1(x− µ)

}
(6)

where x ∈ Rd. The gradient of p(x |µ,Σ) is

∇x p(x |µ,Σ) = − p(x |µ,Σ)Σ−1 (x− µ), (7)
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and thus, by (4), the advection field v̄(x |µ,Σ) that drives the Fokker-Planck PDE
(3) towards this PDF is

v̄(x |µ,Σ) = −DΣ−1 (x− µ). (8)

In the special case of Σ = σ2I, the GD and the corresponding relaxation advection
becomes

p(x |µ, σ) = 1

(2π)
d

2σd
exp

{
− 1

2

(x− µ)T (x− µ)

σ2

}
(9a)

and v̄(x |µ, σ) = − 1

σ2
D (x− µ). (9b)
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Figure 2. (left) p(x |µ,Σ) and (right) ϕ̄(x |µ,Σ, λ = 1) of a 2D Gaussian with µ =
[
0
0

]
and Σ =

[
1 0.4
0.4 1

]
.

For p(x |µ,Σ), the isocontour levels are spaced linearly from 0.01 to max{p(x |µ,Σ)}.

4. The Generalized Gaussian Distribution (GGD) and corresponding
relaxation advection

We propose a new, more general multivariate Generalized Gaussian Distribution
(GGD), denoted N (x |µ,Σ, β), as defined by a PDF of the form

p(x |µ,Σ, β) = Aβ,d exp

{
−
[
Bβ,d(x− µ)TΣ−1(x− µ)

]β}
, (10a)

where Aβ,d =
(Bβ,d

π

) d

2 ·
Γ(d2)β

Γ( d
2β ) |Σ|

1

2

and Bβ,d =
Γ(d+2

2β )

dΓ( d
2β )

, (10b)

where again, x ∈ Rd. By defining Aβ,d and Bβ,d as such, the second central moment
of the GGD is equal to the input matrix Σ, as is the case for the GD. The gradient of
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p(x |µ,Σ, β) is

∇x p(x |µ,Σ, β) = −2β p(x |µ,Σ, β)Bβ,d

[
Bβ,d (x− µ)TΣ−1(x− µ)

]β−1

Σ−1 (x− µ), (11)

and thus by (4), the advection field v̄(x |µ,Σ, β) that drives the Fokker-Planck PDE
(3) towards this PDF is

v̄(x |µ,Σ, β) = −2β DBβ,d

[
Bβ,d (x− µ)TΣ−1(x− µ)

]β−1

Σ−1 (x− µ). (12)

Note that the β = 1 case reduces the GGD formulation in (10) to the Gaussian
formulation in (6). As before, (10)-(12) simplify slightly in the special case of Σ = σ2I.
Assume for the remainder of the GGD examples, shown in Figures 4-5, the statistics
used are N (x |µ,Σ, β), where µ =

[
0
0

]
and Σ =

[
1 0.4
0.4 1

]
, and the diffusion tensor is

D = I. For each p(x |µ,Σ, β) plot, the isocontours are linearly spaced from 0.01 to
max{p(x |µ,Σ, β)}. As illustrated in Figures 2-4, the GGD, for β > 1, is flatter in
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Figure 3. (left) p(x |µ,Σ, β = 2) and (right) ϕ̄(x |µ,Σ, β = 2, λ = 1) of a 2D GGD.
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Figure 4. (left) p(x |µ,Σ, β = 3) and (right) ϕ̄(x |µ,Σ, β = 3, λ = 1) of a 2D GGD.

the immediate vicinity of x = µ, and away from that point eventually falls off towards
zero much faster than does the Gaussian Distribution. Note also from the colorbar
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Figure 5. (left) p(x |µ,Σ, β = 0.6) and (right) ϕ̄(x |µ,Σ, β = 0.6, λ = 1) of a 2D GGD.

in Figures 2-4 that the flatter top results in a smaller normalization coefficient, as is
expected from (10). The smaller β, the more peaked the PDF is, and the larger β, the
flatter the PDF is. In general, the GGD is a well-defined function with an additional
tunable parameter β for more accurately representing ROI.

4.1. Higher-order central moments and smoothness of the GGD

To validate our multivariate GGD formulation, we look to the known higher-order
central moments of the 1D case. The 1D kth central moment of a scalar probability
distribution p(x) [36] is defined as

µk = E[(x− E[x])k] ≜
∫
R
(x− E[x])kp(x)dx. (13)

Having already defined the first and second central moments of the GGD (µ1 = µ and
µ2 = σ2), we look to clarify the third and fourth ones. The third central moment of
the 1D GGD defined by (10) is

µ3 = E[(x− µ)3] =

∫ ∞

−∞
(x− µ)3

[
Aβ,1 exp

{
−
[
Bβ,1

(x− µ)2

σ2

]β}]
dx (14)

The third central moment is used to define the skewness,

γ1 =
µ3
σ3
. (15)

Skewness is a measure of the asymmetry of a PDF, with positive skewness indication
a more elongated right tail relative to the left. It is obvious that the integrand of (14)
is odd, therefore, by construction, the skewness of the 1D GGD is

γ1 = 0.
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The fourth central moment of the 1D GGD is

µ4 = E[(x− µ)4] =

∫ ∞

−∞
(x− µ)4

[
Aβ,1 exp

{
−
[
Bβ,1

(x− µ)2

σ2

]β}]
dx. (16)

The fourth central moment is used to define the kurtsosis,

γ2 =
µ4
σ4

− 3. (17)

Kurtosis is a measure of the “peakedness” of a PDF, with negative kurtosis indicating
less elongated tails than the Gaussian Distribution. We find that the kurtosis for the
GGD as a function of β is

γ2(β) =
Γ( 5

2β )Γ(
1
2β )[

Γ( 3
2β )

]2 − 3


> 0, β < 1

= 0, β = 1

< 0, β > 1

. (18)

Note that the case when β = 1 returns the kurtosis of the Gaussian Distribution
(γ2 = 0), whereas β = 0.5 returns the kurtosis of the Laplacian distribution (γ2 =
3). As β → ∞, the GGD approaches a uniform distribution, so to validate (18),
we numerically confirm that γ2(β) approaches the kurtosis of a uniform distribution
(γ2 = −1.2) as β → ∞, shown in Figure 6.
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Figure 6. γ2(β) where (left) β = [0.1, 1] and (right) β = [1, 50].

To further define the GGD, we analyze its smoothness. The GD is a C∞ function,
meaning it is infinitely differentiable, and all orders of derivatives are continuous. Using
the 1D case of (11) we find the first derivative of the 1D GGD to be

∂p(x |µ,σ2,β)
∂x = −2βBβ,1p(x |µ,σ2,β)

σ2

[
Bβ,1

(x−µ)2

σ2

]β−1
(x− µ) ∈

{
C∞, β ≥ 1

C0, β < 1
. (19)

It is obvious that the derivative is not smooth at x = µ when β < 1, so the GGD
when β < 1 is of class C0, not C∞.
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4.2. Generalized Gaussian Distributions with Anisotropic Flatness
(GGDAF)

To enhance the flexibility of the GGD such that it may fit even more exotic data, we
consider anisotropic flatness. In this context, what we mean by “anisotropic flatness”
is that, along one eigenvector si of the covariance matrix Σ, the distribution has a
shaping parameter βi and along another eigenvector sj , the distribution has a shaping
parameter βj , where βi may not equal βj if i ̸= j. We define the 2D Generalized
Gaussian Distribution with Anisotropic Flatness (GGDAF) as

p̃(x |µ,Σ,β) = Ãβ,2 exp
{
−
[ 2∑
i=1

(
B̃βi,2 q

2
i

)βi

+ (Bβ1,2)
β1 δβ1β2

β1−1∑
i=1

(
β1

i

)
(q21)

β1−i(q22)
i
]}

(20a)

where Ãβ,2 =

|Σ|
1

2

2∏
i=1

Aβi,1 if β1 ̸= β2

Aβ1,2 otherwise

, B̃βi,2 =

{
Bβi,1 if β1 ̸= β2

Bβi,2 otherwise
, q = LST (x− µ), (20b)

L =
√
Λ−1, and Σ = SΛS−1, (20c)

where Σ = SΛS−1 is the eigen decomposition of the covariance matrix (as Σ is sym-
metric and positive semi-definite). The Ã and B̃ coefficients are again chosen such that
the definitions of the first and second central moments in (2) hold. To demonstrate
that the GGDAF simplifies to the GGD when β1 = β2 and displays anisotropic flat-
ness otherwise, we provide Figure 7. We note that the current formulation only returns
circular isocontours for β1 = β2 when β1, β2 ∈ N+, but future work will attempt to
address this such that the GGDAF is applicable and continuous for all real values of
β.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.05

0.06

0.07

0.08

0.09

0.1

0.11

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Figure 7. Examples of six, 2D GGDAF with parameters µ =
[
0
0

]
, (top) Σ =

[
1 0
0 1

]
/(bottom) Σ =

[
1 0.4
0.4 1

]
,

and (left) β = [2 2], (middle) β = [1 3], and (right) β = [2 0.5], respectively. In all subfigures, the isocontour
levels are spaced linearly from 0.05 to max{p̃(x |µ,Σ,β)}.
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For the 3D GGDAF we find the PDF to be

p̃(x |µ,Σ,β) = Ãβ,3 exp

{
−

[
3∑

i=1

(
B̃βi,3 q

2
i

)βi

+
3∑

i=1

3∑
j>i

{
(B̃βi,3)

βiδβiβj

βi−1∑
k=1

(
βi

k

)
(q2i )

βi−k(q2j )
k
}

+(Bβ1,3)
β1δβ1β2β3

∑
i,j,k ̸=0

i+j+k=β1

(
β1

i,j,k

)
(q21)

i(q22)
j(q23)

k

]}
(21a)

where Ãβ,3 =


|Σ|

3∏
i=1

Aβi,1 if β1 ̸= β2 ̸= β3

|Σ|
1

2Aβi,1Aβj ,2 if βi ̸= βj = βk

Aβ1,3 otherwise

, B̃βi,3 =


Bβi,1 if βi ̸= βj , βk

Bβi,2 if βi = βj ̸= βk

Bβi,3 otherwise

, q = LST (x− µ), (21b)

L =
√
Λ−1, and Σ = SΛS−1. (21c)

Figure 8. A 3D GGDAF with parameters µ =
[
0
0

]
, Σ =

[
1 0
0 1

]
, and β = [2 1 1]. The isosurfaces on the

(left) yz-plane are circular, as to be expected because βy = βz , while the (middle) xy- and (right) xz-planes
demonstrate anisotropic flatness created by the fact that βx is different than βy and βz . The three isosurface

values shown are p = 0.01, p = 0.001, and p = 0.0001.

We provide an example of a 3D GGDAF in Figure 8 where βx ̸= βy = βz to demon-
strate circular isocontours in the xy-plane and noncircular isocontours in the other
two perpendicular planes. The d-dimensional case of the GGDAF follows by splitting
the d-nomial expansion into the subsequent d-nomial, (d − 1)-nomial,..., trinomial,
and binomial expansions, as demonstrated in the transition from (20) to (21), mutatis
mutandis. Additionally, we note that, via Bayes’ theorem [37],

px(x
′, tk+) ∝ py(yk|x′)px(x

′, tk−). (22)

From this, it is obvious that, when combining a GGDAF prior px(x
′, tk−) with a

measurement with Gaussian uncertainty py(yk|x′) (as is commonly the case), the
posterior px(x

′, tk+) is a GGDAF; therefore the GGDAF family of distributions are
conjugate priors.

5. Numerical probability distributions

Now consider an arbitrary relaxation shape p̄(x), obtained experimentally and ap-
propriately smoothed. For instance, when modeling the motions of an apex predator
within its observed territory, one might collect a discrete set of measurements repre-
senting the coordinates of the animal. Using this set, one would like to approximately
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define the ROI that represents the non-evasive statistics of said animal. The ROI could
then be used to develop a steady-state p̄(x), from which the relaxation advection field
v̄(x) could be approximated via a finite difference approximation of (4). To focus
this discussion, consider the Fokker-Planck PDE discretized on a uniform Cartesian
2D mesh (with grid width ∆x and ∆y), noticing that higher-dimensional cases follow
as an obvious extension. Assuming homogeneous Dirichlet boundary conditions, the
advection field v̄i,j representing the advection at coordinate (i, j) can be written as

v̄i,j =
D

p̄i,j

[
p̄i+1,j − p̄i−1,j

2∆x

p̄i,j+1 − p̄i,j−1

2∆y

]T
. (23)

An important consideration when approximating v̄i,j is the singularity that can occur
at p̄i,j = 0. We can circumvent this issue by assuming that p is a sufficiently smooth
function, or infinitely differentiable, thus p̄i,j = 0 only at the boundaries. Because of
our homogeneous Dirichlet boundary conditions, v̄i,j at the boundaries is negligible.
Using the approximated v̄i,j , an arbitrary PDF can be relaxed in the same manner as
in the analytical examples. However, generating a p̄(x) from a dataset is nontrivial; the
two different methods that this paper focuses on are the α-convex hull approximation
and kernel density estimation.

5.1. α-convex hull approximation

The α-convex hull [38] is a generalization of the convex hull; where the convex hull
assumes convexity of the estimator region Ω, the α-convex hull assumes α-convexity,
a more flexible constraint that enlarges the family of sets that may be estimated. For
each α ∈ R, a “generalized disk” of radius 1/α is defined as follows: if α = 0, the disk
is a closed halfplane (resulting in an ordinary convex hull), if α > 0 the disk is closed
with a radius of 1/α, and if α < 0 the disk is the closure of the complement of a disk of
radius −1/α. Using this definition of a disk, the α-convex hull, or ROI Ω, of a dataset
S may be defined as the intersection of all closed disks that contain all points of S.
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Figure 9. Estimation of the boundary of an unknown ROI Ω (taken in this as the space between two

parabolas) based on 1000 experimentally obtained datapoints randomly distributed over Ω, using the alpha

shape algorithm, as implemented in Matlab, using (left) an alpha radius (for adjusting the tightness of the
fit around the points) of 0.1, and (right) an alpha radius 0f 0.4. This sophisticated algorithm, which is built
on a Delaunay triangulation of the available datapoints, is a convenient generalization of the more traditional
convex hull algorithm.

Converting Ω into a d-dimensional PDF requires some smoothing via diffusion. Ω
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is first converted to a uniform distribution pΩ(x), defined as

pΩ(x) =
1

C

{
1, x ∈ Ω

0, else
, (24)

where C is such that
∫
Ω pΩ(x) dx = 1. To smooth the edges, the PDF is CT evolved

with the diffusion-only finite difference stencil A(D). Consider the uniform Cartesian
2D mesh finite difference approximation of (3) when v̄(x) = 0 (assuming D = λ I)

pn+1
i,j − pni,j

∆t
= λ

(
pni+1,j − 2pni,j + pni−1,j

∆x2
+
pni,j+1 − 2pni,j + pni,j−1

∆y2

)
(25)

The finite difference stencil A(D) representing (25) is

A(D) =


0 λ

∆y2 0

λ
∆x2 −

(
2λ
∆x2 + 2λ

∆y2

)
λ

∆x2

0 λ
∆y2 0

 , (26)

The stencil is used to form the block tridiagonal Toeplitz matrixM (as demonstrated in
Chapter 1 of [36]) which is used for propagating pΩ(x) until it is sufficiently smoothed.
Using the explicit Euler method, this is written as

pn+1
Ω (x) = pnΩ(x) + ∆t

(
M pnΩ(x)

)
. (27)

The number of timesteps of propagation necessary for sufficient smoothing is relative
to the problem and can be determined empirically. The final result is a smoothed,
d-dimensional p̄(x) representing the ROI Ω. From here, (23) can be used to calculate
v̄(x) in a discretized manner. Application of this smoothing process with 20 timesteps
of smoothing, with ∆t = 0.001 and λ = 1 on the dataset from Figure 9, along with
the corresponding v̄(x), is shown in Figure 10.
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Figure 10. (left) p̄(x) and (right) ϕ̄(x |λ = 1) of numerically defined ROI Ω, approximated via α-convex hull

estimation of sample dataset from Figure 9.
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5.2. Kernel density estimation approximation

Kernel density estimation (KDE) [39–42] is a non-parametric technique that approx-
imates the PDF of a random variable x given a set of k realizations of said random
variable xi, i = 1, ..., k. KDE generates the underlying PDF by placing a kernel func-
tion K(·) scaled by a bandwidth h at each realization. It then sums up the kernels
and normalizes to form a density function. Explicitly stated, the d-dimensional PDF
ph(x) generated by KDE is written as

ph(x) =
1

k hn

k∑
i=1

K

(
x− xi

h

)
. (28)

K(·) is typically a symmetric function that peaks at the realization value xi, and decays
to zero moving away from it. Commonly used kernel functions are the Gaussian, box,
triangle, and Epanechnikov functions. The bandwidth h determines the smoothness
of ph(x) and is dependent on the kernel function. A larger bandwidth will result
in a smoother density, while a smaller bandwidth may capture more local behavior.
Generally, KDE is utilized when an excess of data exists and said data indicates areas
of bias within Ω. For instance, consider an apex predator with a territory similar
to that of Figure 9, with the key difference being that it sleeps near the edge of its
territory. In this case, the most likely area within the ROI for the predator to be is no
longer at the center. In another scenario, there exists an uninhabitable area within the
predator’s ROI, like a lake. As the predator has no means of entering this subregion,
the probability should be negligible here. For both cases, this information would be
lost had Ω been approximated via the α-convex hull (depending on the value of α, for
the latter case).
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Figure 11. Two distinct types of territories, both containing the nominal dataset from Figure 9; one (left)
includes additional points sampled from the red ellipse, representing a den, and the other (right) removes all
points from the green ellipse, representing a lake.

Following the constraints from the datasets from Figure 11, denoted “den dataset”
and “lake datase” for left and right datasets respectively, and increasing the number
of points to k = 10, 000 for additional smoothing, the KDE algorithm in Matlab is
utilized, with the default Gaussian kernel function and bandwidth h = 0.1. With 5
timesteps of smoothing at ∆t = 0.001 and λ = 1, p̄(x) and the corresponding v̄(x) are
approximated, shown in Figure 12.

Determining when to use the α-convex hull approximation versus KDE depends
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Figure 12. For the den dataset: (top left) p̄(x) and (top right) ϕ̄(x |λ = 1) of numerically defined ROI Ω.
For the lake dataset: (bottom left) p̄(x) and (bottom right) ϕ̄(x |λ = 1) of numerically defined ROI Ω, both

determined via KDE.

on the characteristics of the dataset. When data is sparse, using the α-convex hull
approximation may more accurately portray the PDF of the non-evasive target com-
pared to KDE. However, the α-convex hull approximation assumes that each point
within Ω is an equally likely location of the target. By smoothing the ROI via diffu-
sion, this creates a p̄(x) with highest probability near the center of Ω and decaying
probability moving outward. Although this may be a realistic scenario, it is not always
the case. When data is plentiful, KDE can capture areas of focus otherwise ignored
via the α-convex hull approximation. If data is sparse, the bandwidth of KDE can
cause smoothing that removes important local variantions that would’ve been well
represented with the α-convex hull approximation.

6. Application of Relaxation Advection

Utilizing the framework previously developed, we now demonstrate the application of
the derived relaxation advection field with diffusion, the application of which drives
are an arbitrary PDF (taken to be a uniform distribution for this section) to a pre-
determined, either analytic or numerical, steady-state p̄(x).
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6.1. CT evolving using advection-diffusion finite stencil

Once v̄(x) is calculated, either analytically or numerically, it can be inserted into
(3) to drive an arbitrary PDF to the relaxation shape p̄(x). Similar to the process of
smoothing with diffusion, a finite difference stencil is utilized, this time with advection
included A(v, D). Consider the uniform Cartesian 2D mesh finite difference approx-
imation of (3) with the relaxation advection field v̄(x) applied (again with isotropic
diffusion D = λI)

pn+1
i,j −pn

i,j

∆t + pni,j

(
v̄x
i+1,j−v̄x

i−1,j

2∆x +
v̄y
i,j+1−v̄y

i,j−1

2∆y

)
+

(
v̄xi,j

pn
i+1,j−pn

i−1,j

2∆x + v̄yi,j
pn
i,j+1−pn

i,j−1

2∆y

)
(29)

= λ

(
pni+1,j − 2pni,j + pni−1,j

∆x2
+
pni,j+1 − 2pni,j + pni,j−1

∆y2

)

where v̄i,j =
[
v̄x
i,j

v̄y
i,j

]
. Thus, the finite difference stencil A(v̄, D), utilized for all of the

following examples, is

A(v̄, D) =


0 λ

∆y2 − v̄y
i,j

2∆y 0

λ
∆x2 +

v̄x
i,j

2∆x −
(

2λ
∆x2 + 2λ

∆y2

)
−
(

v̄x
i+1,j−v̄x

i−1,j

2∆x +
v̄y
i,j+1−v̄y

i,j−1

2∆y

)
λ

∆x2 − v̄x
i,j

2∆x

0 λ
∆y2 +

v̄y
i,j

2∆y 0

 . (30)

The stencil is used to CT update an arbitrary PDF in the same manner as aforemen-
tioned. To avoid bias, the initial PDF to be relaxed is a uniform distribution over
Ω.

6.2. Convergence to relaxation shape

To determine if the driven PDF p(x, t) has converged to the relaxation shape p̄(x),
the absolute relative difference is computed at each grid point, then summed up to
compute ϵ. On a uniform Cartesian 2D mesh square grid of size N , ϵ can be written
as

ϵ =

N∑
i=1

N∑
j=1

|pi,j − p̄i,j |. (31)

Convergence was assumed when ∆ϵ = ϵ(tk+1) − ϵ(tk) < 0.01, or the summation of
the absolute relative difference at timestep tk+1 minus the summation of the absolute
relative difference at timestep tk. In both analytical examples provided, we use param-
eters µ =

[
0
0

]
and Σ =

[
1 0.4
0.4 1

]
. The parameters for the frames from the simulations

can be found in Table 1.

7. Probabilistic search

Probabilistic search algorithms employ statistical methods that find optimal solutions
in solution-space [32]. For target searching specifically, these algorithms utilize the
information provided by the PDF of a target to control the trajectories of the search
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Figure 13. A uniform distribution relaxed to a GD p̄(x |µ,Σ) via the analytical relaxation advection
v̄(x |µ,Σ) at timestep (left) 50, (middle) 100, and (right) convergence.
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Figure 14. A uniform distribution relaxed to a GGD p̄(x |µ,Σ, β = 2) via the analytical relaxation advection
v̄(x |µ,Σ, β = 2) at timestep (left) 50, (middle) 100, and (right) convergence.
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Figure 15. A uniform distribution relaxed to an α-convex hull approximation p̄(x) via the numerical relax-

ation advection v̄(x) at timestep (left) 100, (middle) 400, and (right) convergence, approximated based on the

dataset from Figure 9.
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Figure 16. A uniform distribution relaxed to a KDE approximation p̄(x) via the numerical relaxation ad-

vection v̄(x) at timestep (left) 100, (middle) 400, and (right) convergence, approximated based on the den
dataset from Figure 11.
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Figure 17. A uniform distribution relaxed to a KDE approximation p̄(x) via the numerical relaxation ad-

vection v̄(x) at timestep (left) 100, (middle) 400, and (right) convergence, approximated based on the lake

dataset from Figure 11.

vehicles examining the ROI, with the objective of minimizing the search time required
to detect said target. As the dynamics of the target may vary, (a non-evasive target ver-
sus an evasive target, for example), so too may the CT evolution of the PDF, governed
by (3). We provide a class of probablistic search algorithm that utilizes uninformed,
periodic search vehicle trajectories as a means for displaying the capabilities of non-
evasive and evasive target searching utilizing the relaxation advection v̄(x) previously
derived. This work is meant to act as a straightforward starting point for a trajectory
optimization method, with search trajectories that are adaptive and informed by the
PDF of the target.

7.1. Non-evasive targets

For the probabilistic search of a non-evasive target, we assume D(x) and v(x) are
time-invariant, i.e. the target is statistically stationary. Then, we use the relaxation
advection field v̄(x) from (4) and homogenous isotropic diffusion D = λ0I to represent
the non-evasive target. We introduce m = 1, ...,M search vehicles moving in periodic
orbits about the ROI. The search vehicles have sensors that form a limited field of view
of the ROI, modeled in the form of a normal distribution pm(x, t) ∼ N (qm(t), σ2m)
where qm(t) is the position and σ2m is the effective width of the field of view of the mth

search vehicle, respectively. This density function acts as an external forcing term in
(3) that “mows” down the probability in its vicinity, assuming that it fails to locate
the target. In this model, where we account for observations, the Fokker-Planck PDE
becomes

∂p(x, t)

∂t
−∇x ·

[
λ0∇x p(x, t)− v̄(x)p(x, t)

]
= −p(x, t)

(
b(x, t)− γ(t)

)
, (32a)

where b(x, t) =
∑M

m=1 am exp

{
− ||x−qm(t)||

2σ2
m

}
and γ(t) =

∫
Ω p(x, t) b(x, t) dx. (32b)

The normalization factor γ(t) ensures that
∫
Ω p(x, t) = 1 for all t, and am is the acuity

of the sensor of the mth search vehicle (this model assumes the sensor’s range decays
exponentially as a function of distance, but other distributions may be used). For
the scope of this paper, the trajectory of the search vehicles qm(t) are fixed and are
designed to best cover the known ROI. Examples of such trajectories are concentric
circles, Cassini ovals [43], and offset lemniscates [44]. Note that larger values of λ lead
to quicker flow of probability, representing a faster-moving target, while smaller values
of λ, representing a slower-moving target, may lead to buildups of probability in small
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subregions. Both behaviors are demonstrated in Figure 18.

7.2. Evasive targets

For an evasive target, we no longer assume the statistics are time-invariant, thus
D(x, t) are v(x, t) are both functions of space and time. Consider a skittish deer,
a target that is both aware of the search vehicles and actively evading them, with
increasing “agitation”, or random fluctuation, and “evasiveness”, or advection away
from, as the search vehicles come closer. In this case, we model the evasive, isotropic
diffusion D(x, t) as the relaxation diffusion tensor λ0I plus the superposition of GGDs
centered at the locations of the M search vehicles, and the evasive advection ṽ(x, t)
as the relaxation advection v̄(x) plus the superposition of the negative gradients of
GGDs centered at the locations of the M search vehicles, explicitly stated as

D(x, t) = λ(x, t)I, where λ(x, t) = λ0 + ψ

M∑
m=1

pm(x |qm(t),Σm), (33a)

and ṽ(x, t) = v̄(x)− δ

M∑
m=1

∇x pm(x |qm(t),Σm), where (33b)

pm(x |qm(t),Σm) = Aβ,d exp

{
−
[
Bβ,d[x− qm(t)]TΣ−1

m [x− qm(t)]

]β}
, (33c)

ψ, δ ≥ 0 are the agitation and evasiviness parameters of the target, respectively. In the
case of inhomogenous, time-varying advection and diffusion, the Fokker-Planck PDE
becomes

∂p(x, t)

∂t
−∇x ·

[
λ(x, t)∇x p(x, t) + p(x, t)[∇x · λ(x, t) I]− ṽ(x, t)p(x, t)

]
(34)

= −p(x, t)
(
b(x, t)− γ(t)

)
.

The prior distribution used as an initialization point for the target search is the relax-
ation PDF p̄(x). For evasive targets, we utilize cooperative hunting, a strategy used
by pack hunters that drives the prey towards the “kill zone” (or generally, the identi-
fication zone), considering their avoidance behavior, commonly used by dolphins [8].
Using rotating trajectories from the Cassini oval family, the search vehicles begin at
the outskirts of the ROI, directing the target inwards, then converge simultaneously
from all directions, trapping the target in the center, as demonstrated in Figure 19.

7.3. Results

To demonstrate the probabilistic search on non-evasive and evasive targets, we dis-
cretize the dynamics from (32a) and (34) on an N × N Cartesian grid of width ∆x
and ∆y and time-march p̄(x, t) using an RK4 scheme and a finite difference stencil M
aforementioned. In Figure 18, we demonstrate three different, non-evasive ROI’s:

(1) N (x |µ,Σ, β = 1) where µ =
[
0
0

]
and Σ =

[
3 0
0 3

]
with concentric circular orbits

(2) N (x |µ,Σ, β = 2) where µ =
[
0
0

]
and Σ =

[
2 0.8
0.8 2

]
with Cassini ovals
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Figure 18. Frames from three different probabilis-

tic search simulations of non-evasive targets with dy-

namics from (32a). The solid lines represent the fixed
orbits of the search vehicles and the points are the

search vehicles’ positions. Parameters for simulations

can be found in Table 2, rows 1-3.

Figure 19. Three subsequent frames from the same

probabilistic search simulation of an evasive target

with dynamics from (34). The solid lines represent
the fixed orbits of the search vehicles and the points

are the search vehicles’ positions. Parameters for sim-

ulations can be found in Table 2, row 4.

(3) An α-convex hull approximation from the dataset from Figure 10 with offset,
scaled lemniscates

We demonstrate an evasive target search in Figure 19, utilizing a set of rotating shapes
from the Cassini oval family. From the subsequent frames, we illustrate how the herd-
ing vehicles increase the probability density at the center of the ROI, leading to an
increased likelihood of target discovery. The full list of parameters for the simulations
can be found in Table 2 and the location of the simulation animations can be found
in the Appendix.

8. Conclusion

This paper effectively demonstrates the CT framework for a probabilistic search algo-
rithm that evolves the PDF p(x, t) of a stochastically-moving, statistically stationary
target governed by the steady-state PDF p̄(x) summarizing the ROI Ω ∈ Rd of the
target, which may be defined analytically or experimentally. Using the Fokker-Planck
PDE, we solve for the relaxation advection equation v̄(x), shown to be only a func-
tion of the diffusion tensor D(x) and p̄(x), which, when applied with D(x), drives
an arbitrary p(x, t) to steady-state p̄(x). In the analytical regime, for the Gaussian
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family of distributions, we use the closed-form p̄(x) to solve for a closed-form solution
to v̄(x). In the experimental regime, we demonstrate how a set of observations may
be used to numerically solve for p̄(x), either using the α-convex hull approximation
or the kernel density estimation; the decision between the two methods was also dis-
cussed at length. For either numerical technique, v̄(x) may be derived numerically
from the steady-state solution of the Fokker-Planck PDE. The efficacy of using ei-
ther the analytically- or numerically-defined relaxation advection was demonstrated
by driving uniform distributions to steady-state.

Having validated v̄(x), we set up a framework for how it may be used to perform
a probabilistic search. First, we consider the behavior of the target. For a non-evasive
target, the presence of search vehicles will have no impact on the motion, thus the
advection in the Fokker-Planck PDE is just the relaxation advection. To the evolution
equation of the PDF, we introduce an external forcing term b(x, t), representative of
search vehicle observations that decrease the probability of discovery in their vicinity.
To ensure unity of the PDF, we include a normalization term γ(t). We then RK4 time-
march the initially steady-state PDF subject to the listed forces and demonstrate how
the PDF changes over time, with the assumption that the observations do not result in
discovery. The search trajectories qm(t) for the non-evasive target are uninformed, pe-
riodic orbits of varying shape. For an evasive target, we add to the relaxation advection
a tendency to move away from, or evade, the search vehicles. To the isotropic diffusion
we add a tendency to become more agitated, or random, as the search vehicles get
closer. Including b(x, t) and γ(t), we again RK4 time-march the initially steady-state
PDF with the assumption that the observations do not result in discovery. The search
trajectories qm(t) for the evasive target, while still uninformed with regards to p(x, t),
are representative of a coordinate herding technique that is meant to drive the target
to a central identification zone, where discovery is more likely.

As opposed to other search techniques that stochastically evolve the state of a target,
the technique we propose evolves the full PDF, which may provide more information to
search vehicle optimization algorithms, improving the standards for search and rescue
procedures, resulting in targets being located faster. In our demonstrations, the search
trajectories are uninformed periodic orbits meant to cover the ROI and do not take
advantage of the real-time information provided by p(x, t). Future work will look to
change these search trajectories, optimizing and directing qm(t) to regions of high
probability within the ROI for fast target procurement.

As a medium for testing the probabilistic search technique, we derive a new for-
mulation for the multivariate Generalized Gaussian Distribution, an extension of the
Gaussian Distribution raised to β. The formulation we present includes a change to
the standard definition of the multivariate GGD to ensure that the second central
moment, or the covariance, is the matrix Σ, as is the case for the GD. We theorize
that this new formulation of the GGD may be advantageous for parameter estimation
algorithms in the field of mixture modeling, particularly for determining the closed-
form solutions to the parameter update steps. Finally, to enhance the flexibility of the
GGD for more precisely fitting data, we introduce the Generalized Gaussian Distri-
bution with Anisotropic Flatness (GGDAF), a GGD with shape parameters that may
differ along the eigenvectors of Σ. We formulate the 2D and 3D GGDAF such that
the distribution simplifies to the GGD when the shaping parameters are equal and
displays anisotropic flatness otherwise. The presented formulation of the GGDAF is
only suited for integer values of β, but future work will aim to address this limitation.
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Appendix

The code to recreate all of the results provided in this paper can be found
at https://github.com/bhanson10/Prob-Search. All animations can be found at
https://bhanson10.github.io/PS.html using password “FCCR”.

Table 1. Relaxation advection simulation parameters

Frame 1 2 3 (convergence)
Parameter iter t ϵ iter t ϵ iter t ϵ

Analytical
Gaussian 50 0.25 41.66 100 0.5 20.53 246 1.23 2.21

GGD, β = 2 50 0.15 48.87 100 0.3 26.70 400 1.2 1.50

Numerical
α-convex hull 100 0.1 93.68 400 0.4 23.17 1021 1.02 4.94
KDE - den 100 0.1 104.26 400 0.4 37.71 1301 1.30 6.79
KDE - lake 100 0.1 86.09 400 0.4 23.71 1008 1.01 7.27

Table 2. Probabilistic search simulation parameters

#
Target characteristics Search vehicle orbit characteristics

Process type Prior shape Parameters λ Orbit shape Parameters

1

Non-evasive

Gaussian
µ =

[
0
0

]
Σ =

[
3 0
0 3

] 1 Concentric circles

radii = [0.5, 1.5, 2.5]
θ0 = [0, 2π

3 ,
4π
3 ]

θ̇ = 8
σm = 0.25
am = 1e4

2 GGD
β = 2
µ =

[
0
0

]
Σ =

[
2 0.8
0.8 2

] 0.5 Cassini ovals

A = 1.2
B = [1.22, 1.4, 1.7]
f = 1.41
θ0 = [0, 2π

3 ,
4π
3 ]

θ̇ = 8
σm = 0.25
am = 4e3

3 α-convex hull Figure 9 dataset 0.25 Offset lemniscates

f = 1.4
θ0 = [0, 2π

3 ,
4π
3 ]

θ̇ = 8
σm = 0.1
am = 8e3

4 Evasive Gaussian

µ =
[
0
0

]
Σ =

[
3 0
0 3

]
δ = 8
ψ = 0.1

2 Rotating Cassini ovals

A = 2
B = [2.02, 2.021,
2.022, 2.023]
v = 0.4
θ0 = [0, π

2 , π,
3π
2 ]

θ̇ = 1
σm = 0.1
am = 4e2
s = 0.6
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