
An Instruction Guide to GBEES:

Grid-based Bayesian Estimation Exploiting Sparsity

October 4, 2024

Authored by:

Mr. Benjamin L. Hanson

The University of California San Diego

Dept. of Mechanical and Aerospace Engineering

Contents

1 Introduction 2

2 Installation 4

3 Quick Start (3D Lorenz Example) 4

3.1 C implementation 5

3.2 Python implementation 6

3.3 Matlab visualization 6

4 Directory Architecture 7

4.1 Measurements 9

4.2 PDFs 10

5 User Input and Output 11

5.1 C Implementation 11

5.2 Python Implementation 15

5.3 Terminal output 18

6 Examples 18

6.1 3D Lorenz Runtime Comparison 18

6.1.1 C and Python Implementation 19

6.1.2 Matlab Visualization 19

6.2 Saturn-Enceladus 4D Distant Prograde Orbit 20

6.2.1 C implementation 22

6.2.2 Python implementation 22

6.2.3 Matlab Visualization 23

6.3 Jupiter-Europa 6D Low Prograde Orbit 24

1

6.3.1 C implementation 25

6.3.2 Python implementation 25

6.3.3 Matlab Visualization 26

A Structure/Function Dictionary 28

B Publications 48

B.1 Refereed Journal Publications 48

B.2 Conference Publications 48

1 Introduction

Consider the state estimation of the nonlinear system

dx

dt
= f(x,w), y = h(x,v), (1)

where x is the state, f is the system dynamics, w ∼ N (0,Q) is the zero-mean, Gaussian process

noise (whereQ is the process noise covariance), y is a measurement, h is a measurement function,

and v ∼ N (0,R) is the zero-mean Gaussian measurement noise (where R is the measurement

noise covariance). The optimal solution to the time-varying uncertainty of a state px(x′, t) driven

by the stochastic differential equation dx/dt lies in the Fokker-Planck equation:

∂px(x
′, t)

∂t
= −∂fi(x

′, t)px(x
′, t)

∂x′
i

+
1

2

∂2qijpx(x
′, t)

∂x′
ix

′
j

, (2)

where fi is the ith component of the system dynamics f at realization x′ and time t, and qij is the

(i, j)th element ofQ. In general, Equation (2) is non-integrable, and px(x′, t) cannot be described

by a finite number of parameters. The optimal solution assimilates data via Bayes’ theorem:

px(x
′, tk+) =

py(yk|x′) px(x
′, tk−)

C
, (3)

2

where px(x
′, tk+) is the a posteriori, py(yk|x′) is the likelihood, px(x′, tk−) is the a priori, and

C is a normalization constant. Again, in general, the number of parameters necessary to represent

px(x
′, tk+) is not finite. Thus, the goal of the Recursive Bayesian Filter (RBF) is to approximate

and propagate the full probability density function (PDF) with as few parameters as possible while

incorporating information from measurements updates.

IfQ = 0, Equation (3) is hyperbolic. IfQ > 0, the equation changes type to elliptic. In prac-

tice, the deterministic part of the stochastic differential equation is dominant, thus Q is relatively

small. The fluid mechanics community has spent considerable effort developing techniques for the

numerical integration of these sorts of systems. Of these techniques, the most well-suited for un-

certainty propagation is the Godunov-type finite volume method. This technique treats probability

as a fluid, flowing it through discretized phase-space subject to the system dynamics, while consid-

ering the general conservation law. These numerical methods have been thoroughly tested for 2D

and 3D applications, but marching higher-dimensional, discretized PDFs proves computationally

expensive.

Enter Grid-based Bayesian Estimation Exploiting Sparsity (GBEES), an efficient numerical

method for propagating 1D-6D, discretized PDFs subject to nonlinear system dynamics with non-

linear measurement functions. By exploiting the fact that the PDF is near-zero in most areas of

phase space (otherwise known as sparsity), GBEES adaptively evolves the grid representing the

discretized PDF to change size and shape with the true uncertainty. GBEES is a 2nd-order accu-

rate, total variation diminishing (TVD), adaptive time-marching numerical scheme that has been

computationally optimized to handle the accurate uncertainty propagation of 1D-6D systems.

The goal of this instruction guide is to provide all of the necessary information needed to com-

pletely understand the inner workings of GBEES. The first thing to know about GBEES is that,

although the theoretical background is quite dense, it was designed to be as user-friendly as possi-

ble. For this reason, GBEES can be implemented in either C or Python with near-equal efficiency

(more on this later). Throughout the propagation period, PDF data is saved in .txt files, and thus

visualization can be performed in any coding language chosen by the user; Matlab is the language

3

of choice used for the examples provided in this guide.

Now, some notes on notation: any text written in code blocks...

such as this...

is meant to represent code. If “$” appears at the start of the line, it is meant to represent a terminal

command. Otherwise, it will most likely represent C/Python/Matlab code. Text enclosed in carets,

<like_so>, must be replaced by the user, usually in the form of a repository path. Any text writ-

ten in green font represents output printed in either C/Python/Matlab or to terminal. Anything in

quotations is likely a directory or file path, but use your best judgement there.

The rest of the guide is structured as follows: first, installation and the necessary steps to mak-

ing sure GBEES can run in your local environment are covered. Next, a quick start example is

covered. This example does not provide full explanation of the method, but can be used to make

sure that GBEES was installed correctly. Then, a deep dive into the architecture of the code is

provided. Here, we break down the overall structure of the code, the individual functions, the

various inputs and outputs, and what makes it efficient. Lastly, we walk through a few more in-

depth examples and provide comment on the results. For any further questions, reference Section

A for a complete dictionary of all of the functions/variables in the code and their purposes, or email

blhanson@ucsd.edu. Happy GBEESing!

2 Installation

GBEES is available on Github. To install, change your working directory to the location you

would like to clone GBEES into. Then run the following command in terminal

$ git clone https://github.com/bhanson10/gbees-hash.git

Now, everything you need to get started with GBEES should be installed in your working directory.

3 Quick Start (3D Lorenz Example)

Tomake sure your installationwent smoothly and you aren’t missing any requirements, wewalk

through the 3D Lorenz attractor example. The 3D Lorenz attractor, also known as the Butterfly

4

Effect, is a highly chaotic solution set to the Lorenz system, often used for testing new RBFs. The

equations of motion for this system are

x =


x

y

z

 ,
dx

dt
= f(x) =


σ(y − x)

−y − xz

−bz + xy − br

 , (4)

with parameter values σ = 4, b = 1, and r = 48 used here. In the following example, we propa-

gate initially Gaussian uncertainty for a short period and demonstrate how it becomes highly non-

Gaussian in a short period. We then perform one discrete measurement update using measurement

function

y = h(x) = z. (5)

Then, we propagate the uncertainty for a short time and see how it becomes non-Gaussian again.

To begin, choose which language you would like to implement GBEES in, C or Python. To

implement this example in C, follow the steps in Section 3.1. To implement this example in Python,

follow the steps in Section 3.2. Then, for both C and Python users, proceed to Section 3.3 for a

discussion on the output results and their visualization.

3.1 C implementation

Navigate to the 3D Lorenz example using the following:

$ cd <path_to_gbees >/gbees/examples/Lorenz3D

Now, run the code with the makefile in C mode:

$ make MODE=c

The resulting PDFs are now located in “./results/c/P0” and “./results/c/P1”.

5

3.2 Python implementation

To run GBEES in Python, we must compile the C implementation to a shared object file. The

GBEES Python wrapper than dynamically links with this object and runs Python through the linked

functions. To compile the C code, return to the parent directory and compile the C code using the

following commands:

$ cd <path_to_gbees >/gbees

$ make

“gbees.so” is the shared object created during compile, which is then called by “gbeespy.py” when-

ever GBEES is run with Python. Now, we return to the 3D Lorenz example using the following:

$ cd <path_to_gbees >/gbees/examples/Lorenz3D

Then compile and run the code with the makefile in Python mode:

$ make MODE=python

The resulting PDFs are now located in “./results/python/P0” and “./results/python/P1”.

3.3 Matlab visualization

Although GBEES is run in C or Python, it is visualized using Matlab. To read in the .txt files

that were just saved, we need to edit “plot_Lorenz3D.m”. In Line 30, change “P_DIR” to be the

location of the PDF directory:

P_DIR = "./results/<language >";

Ensure that “<path_to_gbees>/gbees/examples” has been added to your Matlab search path. Now

run the Matlab code to plot the 3D isosurfaces representing the p = [0.68, 0.95, 0.997] isocurves.

The change in color represents a measurement update has occurred.

6

Figure 1: Initially Gaussian uncertainty becoming highly non-Gaussian when subject to the 3D Lorenz
attractor dynamics. (left) p = [0.68, 0.95, 0.997] isocurves with green background behavior and black
nominal trajectory and (right) p = 0.997 isocurve with black nominal trajectory.

4 Directory Architecture

Now that we have GBEES up and running, we will walk through the directory architecture and

discuss what each folder/file means. Here is GBEES printed out as a tree:

.

|-- LICENSE

|-- README.md

|-- examples

| |-- CR3BP

| | |-- CR3BP.c

| | |-- CR3BP.h

| | |-- CR3BP.py

| | |-- makefile

| | |-- measurements

| | | |-- measurement0.txt

| | |-- plot_CR3BP.m

| |-- Lorenz3D

| | |-- Lorenz3D.c

| | |-- Lorenz3D.h

7

| | |-- Lorenz3D.py

| | |-- makefile

| | |-- measurements

| | | |-- measurement0.txt

| | | |-- measurement1.txt

| | |-- plot_Lorenz3D.m

| |-- PCR3BP

| | |-- PCR3BP.c

| | |-- PCR3BP.h

| | |-- PCR3BP.py

| | |-- makefile

| | |-- measurements

| | | |-- measurement0.txt

| | | |-- measurement1.txt

| | | |-- measurement2.txt

| | | |-- measurement3.txt

| | |-- plot_PCR3BP.m

| |-- compare_times.m

| |-- ode87.m

| |-- plot_nongaussian_surface.m

|-- gbees.c

|-- gbees.h

|-- gbeespy.py

|-- makefile

The base code is “<path_to_gbees>/gbees/gbees.c”. This program contains all of the functional-

ity necessary for running GBEES. “gbees.so” is a shared object that is created when compiling

“gbees.c”. Using “gbeespy.py” and “gbees.so”, GBEES can run in Python almost as efficiently as

it is in C (a demonstration of this capability is provided in Section 6.1). There are three examples

provided in “<path_to_gbees>/gbees/examples”: Lorenz3D, PCR3BP, and CR3BP. Each examples

includes a C implementation (“<model>.c”) and a Python implementation (“<model>.py”), as well

as a script for visualizing the results in Matlab (“plot_<model>.m”). Each C implementation calls

8

from “gbees.c” in the parent directory, and each Python implementation calls from “gbeespy.py”,

so it is important to keep this structure the same once it is cloned from Github.

4.1 Measurements

Example measurements are also included in the GBEES architecture. The structure of a mea-

surement .txt file is very specific and must be matched exactly in order for GBEES to handle it

correctly. Measurements are zero-indexed, meaning the initial uncertainty representing the a pri-

ori uncertainty is labeled “measurement_0.txt”. Then, any measurements beyond this increment

upwards, i.e., “measurement_1.txt”, “measurement_2.txt”, etc.

Let’s take a look at the initial measurement for the 3D Lorenz example, “<path_to_gbees>

/gbees/examples/Lorenz3D/measurements/measurement_0.txt”:

1 x (LU) y (LU) z (LU)

2 -11.50 -10.00 9.5000

3

4 Covariance(x, y, z)

5 1.000000000000000000 0.000000000000000000 0.000000000000000000

6 0.000000000000000000 1.000000000000000000 0.000000000000000000

7 0.000000000000000000 0.000000000000000000 1.000000000000000000

8

9 T (TU)

10 1

Note that the line numbers are added for reference, but are not actually in the true measurement

files and should not be added. In Line 1, the state coordinates from Equation (4) are provided,

with units in parentheses (because the 3D Lorenz attractor system is not physical, we use LU, or

length units, as a normalized unit). In Line 2, the d-dimensional measurement mean is provided,

with spaces between values. Line 3 is skipped. Line 4 is the covariance label, reiterating which

variables the covariance matrix represents. In Lines 5-7, the d × d covariance matrix is provided

with spaces in between. Line 8 is skipped. Line 9 is the period label, T , with units in parentheses

(because the 3D Lorenz attractor system is not physical, we use TU, or time units, as a normalized

9

unit). The period is the amount of time till the next measurement. Line 10 is the period value. The

label lines, or Lines 1, 4, and 10 can contain anything, but it is important that all other artifacts are

replicated, including the skipped lines between mean and covariance and covariance and period.

All values must be separated by spaces. As long as this format is matched, the mean vector and

covariance matrix may be any dimension.

Although the initial measurement “measurement_0.txt” should contain a mean vector and co-

variance matrix with dimensionality that match the dynamics model f , all measurements beyond

this should contain mean vectors andmeasurement covariances that match the dimensionality of the

measurementmodelh. To further explain this, we now look at the secondmeasurement from the 3D

Lorenz example, “<path_to_gbees> /gbees/examples/Lorenz3D/measurements/measurement_1.txt”:

1 z (LU)

2 -8

3

4 Covariance(z)

5 1

6

7 T (TU)

8 1

Here, the mean and covariance are with respect to the measurement state y.

4.2 PDFs

Just like the measurements are read in as .txt files, the non-Gaussian PDFs propagated by

GBEES are output as .txt files. The saved PDFs are separated by measurement. For instance,

the if the most recent measurement update is “measurement_0.txt”, then PDFs are stored in di-

rectory “.../P0”. When “measurement_1.txt” updates the distribution, PDFs will now be stored in

“.../P1”, and so on. For this reason, it is necessary that the requisite number of “.../P#” folders are

created prior to implementing GBEES, as was done in the makefile. The number of measurements

should be equal to the number of subfolders, all of which should be in the same parent directory

which is provided to the GBEES implementation as was done in Sections 3.1 and 3.2.

10

Within the “P”-folders, the PDFs are zero-indexed and increment up, i.e., “pdf_0.txt”, “pdf_1.txt”,

etc. Let’s take a look at the first few lines of the first PDF saved from the 3D Lorenz example, which

should have been saved in “<path_to_gbees> /gbees/examples/Lorenz3D/results/P0/<language>/pdf_0.txt”

if Section 3 was carried out correctly:

1 0.000000

2 7.9611383961e-03 -1.1500000000e+01 -1.0000000000e+01 9.5000000000e+00

3 7.0256799756e-03 -1.1500000000e+01 -1.0000000000e+01 9.0000000000e+00

4 6.2001408170e-03 -1.1500000000e+01 -1.0500000000e+01 9.0000000000e+00

5 7.0256799756e-03 -1.1500000000e+01 -1.0500000000e+01 9.5000000000e+00

6 6.2001408170e-03 -1.2000000000e+01 -1.0000000000e+01 9.0000000000e+00

7 ...

Line 1 is the simulation epoch of the PDF. Lines 2 through the end of the file represent the proba-

bility at specific grid cell centers. The first column is the probability, and the second through fourth

columns are the grid cell state, or (x, y, z) for the 3D Lorenz attractor example. In general, “.../Pk-

1/pdf_n.txt” and “.../Pk/pdf_0.txt” are the PDF at the same epoch before and after measurement

update yk, where n+ 1 is the number of PDFs recorded for each measurement segment.

5 User Input and Output

We will now be walking through the options available to the user when running GBEES. We

will be reviewing these options for the 3D Lorenz example code, so for those who ran the C imple-

mentation in Section 3, proceed to Section 5.1, and for those who ran the Python implementation,

proceed to Section 5.2.

5.1 C Implementation

Open “<path_to_gbees>/gbees/examples/Lorenz3D/Lorenz3D.c” in whatever text editor you

prefer. The following is written in Line 4:

#include "../../gbees.h"

This line is including the parent script that includes all the functionality necessary for GBEES to

run. If “gbees.h” is moved for whatever reason, ensure that this line is changed.

11

Now, move over to “<path_to_gbees>/gbees/examples/Lorenz3D/Lorenz3D.h”. In Lines 7 and

8 we have the following:

#define DIM_f 3 // State dimension

#define DIM_h 1 // Measurement dimension

This is where we define the dimensionality of the system models. The state dimensionality is

defined with “DIM_f”, and the measurement dimensionality is defined with “DIM_h”. Ensure that

these values match your upcoming dynamics and measurement functions.

Back to “<path_to_gbees>/gbees/examples/Lorenz3D/Lorenz3D.c”. Starting at Line 8, we

have the system dynamics function definition:

// This function defines the dynamics model - required

void Lorenz3D(double* f, double* x, double t, double* dx, double* coef){

f[0] = coef[0]*(x[1]-(x[0]+(dx[0]/2.0)));

f[1] = -(x[1]+(dx[1]/2.0))-x[0]*x[2];

f[2] = -coef[1]*(x[2]+(dx[2]/2.0))+x[0]*x[1]-coef[1]*coef[2];

}

The inputs for this function must be exactly as they are, but the output may be a vector “f” of any

size, give that it matches “DIM_f”. “f” is where the equations ofmotion are stored, “x” is the current

state, “t” is the current time (which is only needed if the equations of motion are time-varying), “dx”

is the grid width (which is only needed if the equations of motion are nonconservative), and if any

constants are required for the function, they will be stored in the “coef” variable (more on this later).

In this case, the function is the 3D Lorenz attractor equations of motion.

Next, the measurement function is defined, starting in Line 15:

// This function defines the measurement model - required if MEASURE == true

void z(double* h, double* x, double t, double* dx, double* coef){

h[0] = x[2];

}

The inputs for this function must be exactly as they are, but the output may be a vector “h” of any

size, give that it matches “DIM_h”. “h” is where the measurement is stored, “x” is the current

12

state, “t” is the current time (which is only needed if the measurement function is time-varying),

“dx” is the grid width (which is only needed if the equations of motion are nonconservative), and

if any constants are required for the function, they will be stored in the “coef” variable (more on

this later). In this case, the function is the z-value.

Now, we enter the main script where GBEES is implemented. First, starting in Line 23, we

read in the PDF directory, measurement directory, and first measurement file:

char* P_DIR = "./results/c"; // Saved PDFs path

char* M_DIR = "./measurements"; // Measurement path

char* M_FILE = "measurement0.txt"; // Measurement file

We then create a Measurement object using this information in Line 26:

Meas M = Meas_create(DIM_f, M_DIR, M_FILE);

Now, we generate a Grid object. Grid object initialization requires a dimensionality, probability

threshold, center, and grid width. In general, the grid width is half of the initial standard deviation

from the initial measurement in each direction. Starting in Line 32, we define the grid width:

double dx[DIM_f]; // Grid width, default is half of the std. dev. from the

initial measurement

for(int i = 0; i < DIM_f; i ++){

dx[i] = pow(M.cov[i][i],0.5)/2;

}

We then initialize the Grid object with “DIM_f”, a probability threshold p = 5e-6, the mean of the

initial measurement, and “dx”, in Line 36:

Grid G = Grid_create(DIM_f, 5E-6, M.mean, dx); // Inputs: (dimension ,

probability threshold , center, grid width)

Now, we initialize the Trajectory object. The Trajectory object has all of the coefficients required

for calculation of the dynamics function and themeasurement function. For the 3DLorenz attractor,

we need σ, b, and r. These values are initialized, and the Trajectory object is defined in Lines 38

and 39:

13

double coef[] = {4.0, 1.0, 48.0}; // Lorenz3D trajectory attributes (sigma,

beta, r)

Traj T = Traj_create(3, coef); // Inputs: (# of coefficients , coefficients)

The first input to the Trajectory object is the number of coefficients in the list.

Now, we initialize the miscellaneous inputs. Descriptions for each input in Lines 41 through

50 are given in Table 1.

Table 1: Miscellaneous Parameters

Name Data Type Description
NUM_DIST int Number of distributions recorded per measurement
NUM_MEAS int Number of measurements for propagation period
DEL_STEP int Number of steps per deletion procedure (more on this in Section A)

OUTPUT_FREQ int Number of steps per printing PDF information to terminal
CAPACITY int Capacity of hash table (power of 2 for optimal hashing)
OUTPUT bool Boolean switch for printing PDF information to terminal
RECORD bool Boolean switch for recording PDF information to .txt files
MEASURE bool Boolean switch for performing measurement updates
BOUNDS bool Boolean switch for including bounding function (more on this in Section A)

COLLISIONS bool Boolean switch for tracking collision counts

Finally, we run GBEES with all of the user inputs in Line 52:

run_gbees(Lorenz3D , z, NULL, G, M, T, P_DIR, M_DIR, NUM_DIST , NUM_MEAS ,

DEL_STEP, OUTPUT_FREQ , CAPACITY, DIM_h, OUTPUT, RECORD, MEASURE, BOUNDS,

COLLISIONS);

Table 2 provides the description for each of the inputs not already defined.

Table 2: GBEES Inputs

Input No. Name Data Type Description
1 Lorenz3D function Dynamics function
2 z function Measurement function
3 NULL function Bounding function. If no bounding function, put “NULL”
4 G Grid Grid object
5 M Meas Measurement object
6 T Traj Trajectory object
7 P_DIR char* Directory location for saving PDFs
8 M_DIR char* Directory location for reading measurements

14

5.2 Python Implementation

Open “<path_to_gbees>/gbees/examples/Lorenz3D/Lorenz3D.py” in whatever text editor you

prefer. The following is written in Lines 4 to 6:

import sys

sys.path.append('../../')

import gbeespy as gbees # type: ignore

This line is including the parent script that includes all the functionality necessary for GBEES to

run. If “gbeespy.py” is moved for whatever reason, ensure that this line is changed.

In Lines 8 and 9 we have the following:

DIM_f = 3 # State dimension

DIM_h = 1 # Measurement dimension

This is where we define the dimensionality of the system models. The state dimensionality is

defined with “DIM_f”, and the measurement dimensionality is defined with “DIM_h”. Ensure that

these values match your upcoming dynamics and measurement functions.

Starting at Line 11, we have the system dynamics function definition:

This function defines the dynamics model - required

def Lorenz3D(x, t, dx, coef):

f1 = coef[0]*(x[1] - (x[0] + (dx[0]/2.0)))

f2 = -(x[1] + (dx[1]/2.0)) - x[0]*x[2]

f3 = -coef[1]*(x[2] + (dx[2]/2.0)) + x[0]*x[1] - coef[1]*coef[2]

return [f1, f2, f3]

The inputs for this function must be exactly as they are, but the output may be a vector “f” of any

size, give that it matches “DIM_f”. “f” is where the equations ofmotion are stored, “x” is the current

state, “t” is the current time (which is only needed if the equations of motion are time-varying), “dx”

is the grid width (which is only needed if the equations of motion are non-conservative), and if any

constants are required for the function, they will be stored in the “coef” variable (more on this later).

In this case, the function is the 3D Lorenz attractor equations of motion.

Next, the measurement function is defined, starting in Line 18:

15

This function defines the measurement model - required if MEASURE == True

def z(x, t, dx, coef):

h1 = x[2]

return [h1]

The inputs for this function must be exactly as they are, but the output may be a vector “h” of any

size, give that it matches “DIM_h”. “h” is where the measurement is stored, “x” is the current

state, “t” is the current time (which is only needed if the measurement function is time-varying),

“dx” is the grid width (which is only needed if the equations of motion are nonconservative), and

if any constants are required for the function, they will be stored in the “coef” variable (more on

this later). In this case, the function is the z-value.

Now, we enter the main script where GBEES is implemented. First, starting in Line 26, we

read in the PDF directory, measurement directory, and first measurement file:

P_DIR = "./results/python" # Saved PDFs path

M_DIR = "./measurements" # Measurement path

M_FILE = "measurement0.txt" # Measurement file

We then create a Measurement object using this information in Line 29:

M = gbees.Meas_create(DIM_f, M_DIR, M_FILE)

Now, we generate a Grid object. Grid object initialization requires a dimensionality, probability

threshold, center, and grid width. In general, the grid width is half of the initial standard deviation

from the initial measurement in each direction. Starting in Line 35, we define the grid width:

dx = [None] * DIM_f # Grid width, default is half of the std. dev. from the

initial measurement

for i in range(DIM_f):

dx[i] = (M.cov[i][i]**(0.5))/2

We then initialize the Grid object with “DIM_f”, a probability threshold p = 5e-6, the mean of the

initial measurement, and “dx”, in Line 38:

G = gbees.Grid_create(DIM_f, 5E-6, M.mean, dx) # Inputs: (dimension ,

probability threshold , center, grid width)

16

Now, we initialize the Trajectory object. The Trajectory object has all of the coefficients required

for calculation of the dynamics function and themeasurement function. For the 3DLorenz attractor,

we need σ, b, and r. These values are initialized, and the Trajectory object is defined in Lines 40

and 41:

coef = [4.0, 1.0, 48.0] # Lorenz3D trajectory attributes (sigma, beta, r)

T = gbees.Traj_create(len(coef), coef) # Inputs: (# of coefficients ,

coefficients)

The first input to the Trajectory object is the number of coefficients in the list.

Now, we initialize the miscellaneous inputs. Descriptions for each input in Lines 43 through

50 are given in Table 3.

Table 3: Miscellaneous GBEES Inputs

Name Data Type Description
NUM_DIST int Number of distributions recorded per measurement
NUM_MEAS int Number of measurements for propagation period
DEL_STEP int Number of steps per deletion procedure (more on this in Section A)

OUTPUT_FREQ int Number of steps per printing PDF information to terminal
CAPACITY int Capacity of hash table (power of 2 for optimal hashing)
OUTPUT bool Boolean switch for printing PDF information to terminal
RECORD bool Boolean switch for recording PDF information to .txt files
MEASURE bool Boolean switch for performing measurement updates
BOUNDS bool Boolean switch for including bounding function (more on this in Section A)

COLLISIONS bool Boolean switch for tracking collision counts

Finally, we run GBEES with all of the user inputs in Line 54:

gbees.run_gbees(Lorenz3D , z, None, G, M, T, P_DIR, M_DIR, NUM_DIST , NUM_MEAS ,

DEL_STEP, OUTPUT_FREQ , CAPACITY, DIM_h, OUTPUT, RECORD, MEASURE, BOUNDS,

COLLISIONS)

Table 4 provides the description for each of the inputs.

17

Table 4: GBEES Inputs

Input No. Name Data Type Description
1 Lorenz3D function Dynamics function
2 z function Measurement function
3 None function Bounding function. If no bounding function, put “NULL”
4 G Grid Grid object
5 M Meas Measurement object
6 T Traj Trajectory object
7 P_DIR string Directory location for saving PDFs
8 M_DIR string Directory location for reading measurements

5.3 Terminal output

Now, we discuss the output that is printed to terminal. Here is an example of a line that is

printed to terminal, from the 3D Lorenz attractor example:

Timestep: 1-236, Program time: 2.675827 s, Sim. time: 1.250000 TU, Active/Total Cells: 3542/7471

We now breakdown the components of this output. “Timestep: M -N” gives the last measurement

numberM and the prediction step numberN . “Program time: P s” gives the computation runtime

up to this point P in seconds. “Sim. time: S TU” gives the simulation propagation time S in

time units (TU). “Active/Total Cells: A/T ” gives the number of grid cells with probability above

threshold A and the total number of grid cells T .

6 Examples

Now, we dive into the more advanced examples provided with GBEES. If you haven’t already,

make sure you were able to get Section 3 working.

6.1 3D Lorenz Runtime Comparison

Earlier, we stated that the Python wrapper is able to implement GBEES nearly as efficiently as

the C code. To put this to the test, we are going to use the output of GBEES to compare computation

runtime.

18

6.1.1 C and Python Implementation

Navigate to “<path_to_gbees>/gbees/examples/Lorenz3D” and run the following command:

$ make MODE=c

Copy the terminal output into “<path_to_gbees>/gbees/examples/Lorenz3D/results/c/runtime.txt”

and remove all of the extra blank lines and the line PERFORMING BAYESIAN UPDATE AT:

1.000000 TU.... Then run the following command:

$ make MODE=python

Copy the terminal output into “<path_to_gbees>/gbees/examples/Lorenz3D/results/python/runtime.txt”

and remove all of the extra blank lines and the line PERFORMING BAYESIAN UPDATE AT:

1.000000 TU....

6.1.2 Matlab Visualization

Now open “<path_to_gbees>/gbees/examples/compare_times.m” in Matlab and change Line 4 to:

SYS = "Lorenz3D";

Now run the code. The output should look similar to Figure 2. This script compares the distribution

cell count and computation runtime of the C and Python implementations (the cell count is plotted

to ensure that the two implementations are returning identical results).

19

Lorenz3D Runtime Comparison

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Simulation time (TU)

0

0.5

1

1.5

2

2.5
P

ro
g
ra

m
 t

im
e

(s
)

0

2000

4000

6000

8000

10000

12000

14000

C
el

l
co

u
n
t

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Simulation time (TU)

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

N
o
rm

al
iz

ed
 p

ro
g
ra

m
 t

im
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o
rm

al
iz

ed
 c

el
l

co
u
n
t

Figure 2: At output epochs, the (left) true cell count/computation runtime of the C and Python implemen-
tations are compared, and the (right) normalized cell count/computation runtimeof the C and Python imple-
mentations are compared.

The Python implementation takes 1.0347× the C implementation while returning the identical

PDF. This comparison can be performed for the upcoming examples by creating the necessary

directories and changing the system in Line 4.

6.2 Saturn-Enceladus 4D Distant Prograde Orbit

For this example, we propagate the state uncertainty of an unstable Saturn-Enceladus Distant

Prograde Orbit (DPO) with nonlinear measurement updates with GBEES. DPOs are planar, M2-

centered, stable/unstable periodic orbits whose invariant manifolds provide heteroclinic connec-

tions between L1 and L2 Lyapunov orbits, meaning a substantial volume of the three-body system

may be explored by forming chains of unstable periodic orbits connected by low-energy transfers.

Depending on the energy of the third-body, the DPO may be unstable, but operation there may be

advantageous, as the L1−DPO−L2 chain efficiently traverses different volumes of phases space

with the option to idle for multiple orbits between L1 and L2. Due to the instability, uncertainty

propagation for this orbit family is best handled by non-Gaussian filters like GBEES.

The state and orbital dynamics of a spacecraft in the Planar Circular Restricted Three Body

20

Problem (PCR3BP) in the synodic, non-dimensional frame are

x =



x

y

ẋ

ẏ


and ẋ = f(x) =



ẋ

ẏ

2ẏ + x− (1−µ)(x+µ)
r1

− µ(x−1+µ)
r2

−2ẋ+ y − (1−µ)y
r1

− µy
r2


, (6)

where µ = µ2/(µ1+µ2) is the mass ratio, µi represents the gravitational parameter of bodyMi, and

ri is the distance to bodyMi. This model is used in the prediction step in the upcoming analysis.

The measurement model is

y =


ρ

θ

ρ̇

 = h(x) =


√
(x− 1 + µ)2 + y2

tan−1
(

y
x−1+µ

)
(x−1+µ)ẋ+yẏ

ρ

 .

where ρ is the range, θ is the azimuth angle, and ρ̇ is the range-rate, all relative to M2. Because

of the Bayesian nature of this investigation, measurements are taken to be the true state at epoch,

transformed by h with zero-mean Gaussian noise. This model is used in the correction step in the

upcoming analysis.

One integral of motion exists for the CR3BP, the Jacobi constant, and is defined as

C = x2 + y2 +
2(1− µ)

r1
+

2µ

r2
+ µ(1− µ)− ẋ2 − ẏ2 − ż2; (7)

because GBEES is a 2nd-order accurate numerical scheme, Equation (7) is not necessarily con-

served. To compensate for this, the requirement can be hardcoded into the grid generation. The

initial discretized PDF has a minimum and maximum C. As the grid grows in phase space, for-

bidden cells are those that fall outside of this bound and are not created. Admissible cells fall

within the initial Jacobi bounds and are inserted into the grid as needed. Using Jacobi bounding,

the conservation of C is artificially ensured in GBEES.

21

An initial state that results in a Saturn-Enceladus DPO is

x0 =



1.001471 (LU)

−1.751810e-5 (LU)

7.198783e-5 (LU/TU)

1.363392e-2 (LU/TU)


=



238879.876159 (km)

−4.178575 (km)

9.079038e-4 (km/s)

1.719497e-2 (km/s)


.

Other properties of the trajectory are provided in Table 6.

Table 5: Saturn-Enceladus DPO properties

µ LU (km) TU (s) C SI T (hr)
1.901110e-7 238529 18913 3.0 + 7.809821e-5 3.018700e+2 19.58109

6.2.1 C implementation

Navigate to the PCR3BP example using the following:

$ cd <path_to_gbees >/gbees/examples/PCR3BP

Now, compile and run the code with the makefile in C mode:

$ make MODE=c

The resulting PDFs are now located in “./results/c/P0” through “./results/c/P3”.

6.2.2 Python implementation

To run GBEES in Python, we must compile the C implementation to a shared object file. The

GBEES Python wrapper than dynamically links with this object and runs Python through the linked

functions. To compile the C code, return to the parent directory and compile the C code using the

following commands:

$ cd <path_to_gbees >/gbees

$ make

“gbees.so” is the shared object created during compile, which is then called by “gbeespy.py” when-

ever GBEES is run with Python. Now, navigate to the PCR3BP example using the following:

22

$ cd <path_to_gbees >/gbees/examples/PCR3BP

Then compile and run the code with the makefile in Python mode:

$ make MODE=python

The resulting PDFs are now located in “./results/python/P0” through “./results/python/P3”.

6.2.3 Matlab Visualization

Although GBEES is run in C or Python, it is visualized using Matlab. To read in the .txt files that

were just saved, we need to edit “plot_PCR3BP.m”. In Line 55, change “P_DIR” to be the location

of the PDF directory:

P_DIR = "./results/<language >";

Ensure that “<path_to_gbees>/gbees/examples” has been added to your Matlab search path. Now

run the Matlab code to plot the 4D isosurfaces representing the p = [0.68, 0.95, 0.997] isocurves.

The GBEES-propagated distribution is a discretized, 4D PDF, but integrating over the velocity-

and position-spaces returns the 2D position and velocity PDFs, respectively. This is done via a

numerical implementation of the following formulae:

p(x,y)(x
′, y′) =

∫
Ω(ẋ,ẏ)

px(x
′)dẋ′dẏ′ and p(ẋ,ẏ)(ẋ

′, ẏ′) =

∫
Ω(x,y)

px(x
′)dx′dy′.

The color changes throughout indicate when a measurement update has occurred, where the a

posteriori px(x′, tk+) is the resultant assimilation of the a priori px(x′, tk−) and the likelihood

distribution py(yk|x′). The distributions shown are not separated by equal time intervals; instead,

they are spaced to optimize visualization.

23

Figure 3: Saturn-Enceladus DPO true synodic state uncertainty.

6.3 Jupiter-Europa 6D Low Prograde Orbit

For this example, we propagate the state uncertainty of a Jupiter-Europa Low Prograde Orbit

(LPO). The state and orbital dynamics of a spacecraft in the Circular Restricted Three Body Problem

(CR3BP) in the synodic, non-dimensional frame are

x =



x

y

z

ẋ

ẏ

ż


and ẋ = f(x) =



ẋ

ẏ

ż

2ẏ + x− (1−µ)(x+µ)
r1

− µ(x−1+µ)
r2

−2ẋ+ y − (1−µ)y
r1

− µy
r2

− (1−µ)z
r1

− µz
r2


, (8)

24

where µ = µ2/(µ1+µ2) is the mass ratio, µi represents the gravitational parameter of bodyMi, and

ri is the distance to bodyMi. This model is used in the prediction step in the upcoming analysis. We

do not perform a measurement update for this example, and we use the Jacobi bounding function

from Section 6.2.

An initial state that results in a Jupiter-Europa LPO is

x0 =



1.0169963 (LU)

−1.069795e-20 (LU)

−5.1360140e-34 (LU)

−1.393517e-14 (LU/TU)

1.257591e-2 (LU/TU)

−3.157220e-33 (LU/TU)


=



6.798813e+5 (km)

−7.151785e-15 (km)

−3.433523e-28 (km)

−1.918358e-13 (km/s)

1.731238e-1 (km/s)

−4.346324e-32 (km/s)


.

Other properties of the trajectory are provided in Table 6.

Table 6: Jupiter-Europa LPO properties

µ LU (km) TU (s) C SI T (hr)
2.528018e-5 668519 48562 3.003571 1.0 + 1.74001e-9 29.661406

6.3.1 C implementation

Navigate to the 6D Jupiter-Europa LPO example using the following:

$ cd <path_to_gbees >/gbees/examples/CR3BP

Now, we compile and run the code with the makefile in C mode:

$ make MODE=c

The resulting PDFs are now located in “./results/c/P0”.

6.3.2 Python implementation

To run GBEES in Python, we must compile the C implementation to a shared object file. The

GBEES Python wrapper than dynamically links with this structure and runs Python through the

25

linked functions. To compile the C code, return to the parent directory and compile the C code

using the following commands:

$ cd <path_to_gbees >/gbees

$ make

“gbees.so” is the shared structure created during compile, which is then called by “gbeespy.py”

whenever GBEES is run with Python. Now, navigate to the 6D Jupiter-Europa LPO example using

the following:

$ cd <path_to_gbees >/gbees/examples/CR3BP

Then, compile and run the code with the makefile in Python mode:

$ make MODE=python

The resulting PDFs are now located in “./results/python/P0”.

6.3.3 Matlab Visualization

Although GBEES is run in C or Python, it is visualized using Matlab. To read in the .txt files that

were just saved, we need to edit “plot_CR3BP.m”. In Line 77, change “P_DIR” to be the location

of the PDF directory:

P_DIR = "./results/<language >";

Ensure that “<path_to_gbees>/gbees/examples” has been added to your Matlab search path. Now

run the Matlab code to plot the 6D isosurfaces representing the p = [0.68, 0.95, 0.997] isocurves.

The GBEES-propagated distribution is a discretized, 6D PDF, but integrating over the velocity-

and position-spaces returns the 3D position and velocity PDFs, respectively. This is done via a

numerical implementation of the following formulae:

p(x,y,z)(x
′, y′, z′) =

∫
Ω(ẋ,ẏ,ż)

px(x
′)dẋ′dẏ′dż′ and p(ẋ,ẏ,ż)(ẋ

′, ẏ′, ż′) =

∫
Ω(x,y,z)

px(x
′)dx′dy′dz′.

26

Figure 4: Jupiter-Europa LPO true synodic state uncertainty.

27

A Structure/Function Dictionary

Now, we list each of the structures and functions of importance in the GBEES code, as well as

their purpose, in order as they appear in the code.

Table A1: Structure Definitions in “gbees.h”

Name Data Type Description

Meas struct
• Parent: none

• Measurement structure where measure-

ment information is stored

Meas::dim int
• Parent: Meas

• Dimensionality of Measurement mean

and covariance

Meas::mean ptr to double
• Parent: Meas

• Mean of Measurement structure

Meas::cov ptr to ptr to

double
• Parent: Meas

• Covariance of Measurement structure

Meas::T double
• Parent: Meas

• Period of continuous-time propagation

before next measurement update

28

Name Data Type Description

Grid struct
• Parent: none

• Grid structure where grid information is

stored

Grid::dim int
• Parent: Grid

• Dimensionality of grid

Grid::thresh double
• Parent: Grid

• Probability threshold of grid

Grid::t double
• Parent: Grid

• Current time of simulation

Grid::dt double
• Parent: Grid

• Size of step of time march

Grid::center ptr to double
• Parent: Grid

• Center coordinates of grid

Grid::dx ptr to double
• Parent: Grid

• Grid width in each dimension

29

Name Data Type Description

Grid::hi_bound double
• Parent: Grid

• Max output of bounding function from

initial distribution, set to DBL_MAX if

bounding isn’t implemented

Grid::lo_bound double
• Parent: Grid

• Min output of bounding function from

initial distribution, set to -DBL_MAX if

bounding isn’t implemented

Traj struct
• Parent: none

• Trajectory structure where trajectory in-

formation is stored

Traj::coef ptr to double
• Parent: Traj

• List of coefficients used in dynamics and

measurement models

30

Name Data Type Description

HashTableEntry struct
• Parent: none

• To perform continuous-time marching ef-

ficiently, GBEES stores the discretized

PDF as a Hash Table, where each grid cell

is a HashTableEntry that contains infor-

mation about the grid cell

HashTableEntry::state ptr to int
• Parent: HashTableEntry

• List containing the index coordinates,

converted from true coordinate values to

integer values via indexing

HashTableEntry:: prob double
• Parent: HashTableEntry

• Probability at grid cell

HashTableEntry::v ptr to double
• Parent: HashTableEntry

• List containing advection values in each

direction at the forward interface for the

grid cell

31

Name Data Type Description

HashTableEntry::ctu ptr to double
• Parent: HashTableEntry

• List containing corner transport upwind

values in each direction at the forward in-

terface for the grid cell

HashTableEntry::

i_nodes

ptr to ptr to

HashTableEntry
• Parent: HashTableEntry

• List containing the pointers to pointers

to backward neighboring entries in all

dimensions, used for implementing Go-

dunov scheme

HashTableEntry::

k_nodes

ptr to ptr to

HashTableEntry
• Parent: HashTableEntry

• List containing the pointers to pointers to

forward neighboring entries in all dimen-

sions, used for implementing Godunov

scheme

HashTableEntry::dcu double
• Parent: HashTableEntry

• Donor cell upwind value for grid cell

32

Name Data Type Description

HashTableEntry::

cfl_dt

double
• Parent: HashTableEntry

• Maximum time step that follows the

Courant–Friedrichs–Lewy condition for

all HashTableEntries in the BST

HashTableEntry::

new_f

int
• Parent: HashTableEntry

• Flag indicating if the grid cell has just

been created in the previous grow step

HashTableEntry:: ik_f int
• Parent: HashTableEntry

• Flag indicating if the grid cell requires

updating of the backward and forward

neighboring HashTableEntries

HashTableEntry::

bound_value

double
• Parent: HashTableEntry

• Bound value returned by the input bound-

ing function give the true coordinates, set

to 0 if no bounding function is input

HashTableEntry:: next ptr to

HashTableEntry
• Parent: HashTableEntry

• Pointer to next node in HashTableEntry

defined as a linked list

33

Name Data Type Description

HashTable struct
• Parent: none

• HashTableEntries are stored in the

HashTables structure, with extra at-

tributes providing general information of

the hash table

HashTable:: entries ptr to ptr to

HashTableEntry
• Parent: HashTable

• List of linked lists representing

HashTableEntries in HashTable

HashTable:: capacity size_t
• Parent: HashTable

• Capacity of HashTable, or number of en-

tries in HashTable

HashTable:: a_count size_t
• Parent: HashTable

• Count of number of cells above threshold

in PDF

HashTable:: tot_count size_t
• Parent: HashTable

• Count of number of cells in PDF

34

Table A2: Function Definitions in “gbees.c”

Name Data Type Description

exit_nomem function
• Parent: none

• Return: void

• This function is used throughout the code to output

where a memory allocation failure occured

Meas_create function
• Parent: none

• Return: Meas

• This function uses the measurement directory and

measurement file to create a Measurement struc-

ture

Meas_free function
• Parent: none

• Return: void

• This function frees the memory associated with a

Measurement structure

Grid_create function
• Parent: none

• Return: Grid

• This function creates a Grid structure from the user

inputs

35

Name Data Type Description

Grid_free function
• Parent: none

• Return: void

• This function frees the memory associated with a

Grid structure

Traj_create function
• Parent: none

• Return: Traj

• This function creates a Traj structure from the user

inputs

Traj_free function
• Parent: none

• Return: void

• This function frees the memory associated with a

Traj structure

HashTableEntry_create function
• Parent: None

• Return: ptr to HashTableEntry

• Given the user inputs, this function creates a

HashTableEntry structure

36

Name Data Type Description

HashTable_create function
• Parent: None

• Return: ptr to HashTable

• Given the user inputs, this function creates a

HashTable structure

HashTableEntry_free function
• Parent: None

• Return: void

• This function frees the memory associated with a

HashTable made up of HashTableEntries

hash_key function
• Parent: None

• Return: uint64_t

• This function calculates the hash key given a d-

dimensional state following the FNV-1a hash func-

tion

same_state function
• Parent: None

• Return:bool

• This function determines whether two integer ar-

rays are equal

37

https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function

Name Data Type Description

mc function
• Parent: None

• Return: double

• This function calculates the MC flux limiter value

given θ

inv_mat function
• Parent: gauss_probability

• Return: void

• This function inverts a matrix

mul_mat_vec function
• Parent: gauss_probability

• Return: void

• This function multiplies a matrix by a vector

dot_product function
• Parent: gauss_probability

• Return: double

• This function takes the dot product of two vectors

gauss_probability function
• Parent: none

• Return: double

• Given a true coordinate and a Gaussian measure-

ment, calculate the probability:

p = exp
(
− 1

2
(x− µ)TΣ−1(x− µ)

)

38

Name Data Type Description

HashTableEntry_insert function
• Parent: HashTable

• Return: void

• This function creates a HashTableEntry given the

inputs and inserts the entry into the front of the

linked list at the index given by the hashing func-

tion

HashTable_insert function
• Parent: none

• Return: void

• This function calls HashTableEntry_insert de-

pending on whether or not the provided state falls

within the bounding function bounds.

HashTable_search function
• Parent: initialize_ik_nodes

• Return: ptr to HashTableEntry

• This function searches for a HashTableEntry with

a specific state, if the state does not exist, the re-

turned ptr is NULL

39

Name Data Type Description

HashTable_delete function
• Parent: none

• Return: void

• This function takes a state and deletes the linked

list node within the HashTableEntry associated

with the state

get_size function
• Parent: none

• Return: int

• This function gets the size of the HashTable

initialize_adv function
• Parent: none

• Return: void

• This function loops through the HashTableEntries

and calculates the advection at each grid cell, based

on the dynamics system

initialize_ik_nodes function
• Parent: none

• Return: void

• This function loops through the HashTableEntries

and finds the backward and forward neighbors for

each grid cell

40

Name Data Type Description

recursive_loop function
• Parent: initialize_grid

• Return: void

• This recursive function performs d nested loops,

initializing the HashTableEntries of the initial dis-

tribution

initialize_grid function
• Parent: initialize_grid

• Return: void

• This function initializes the discretized PDF stored

in the HashTable based off the initial measurement

and Grid structure

set_bounds function
• Parent: none

• Return: void

• This function finds the min and max output of the

bounding function of the initial discretized PDF

get_sum function
• Parent: normalize_tree

• Return: void

• This function calculates the probability sum of the

PDF

41

Name Data Type Description

divide_sum function
• Parent: normalize_tree

• Return: void

• This function divides each grid cell probability in

the PDF by the probability sum, while also track-

ing the active number of grid cells, the total num-

ber of grid cells, and the max key value

normalize_tree function
• Parent: normalize_tree

• Return: void

• This function normalizes the PDF, gets the number

of active cells, the number of total cells

concat_p function
• Parent: none

• Return: ptr to char

• This function concatenates the PDF directory and

file to save a PDF

concat_c function
• Parent: none

• Return: ptr to char

• This function concatenates the PDF directory and

file to save a collision count

42

Name Data Type Description

write_file function
• Parent: record_data

• Return: void

• This recursive function writes the probability and

grid cell true coordinates of each TreeNode in the

BST to a text file

record_data function
• Parent: none

• Return: void

• This function takes a file name and saves the con-

tents of the BST to the text file

create_neighbors function
• Parent: grow_tree

• Return: void

• This recursive function loops through the BST,

finds TreeNodes with probabilities above thresh-

old, then inserts all neighbors that do not already

exist in the BST.

43

Name Data Type Description

grow_tree function
• Parent: grow_tree

• Return: void

• This function inserts necessary grid cells into the

BST, balances the BST, initializes the advection for

each grid cell added, and initializes the backward

and forward neighbors for each grid cell added

check_cfl_condition function
• Parent: grow_tree

• Return: void

• This function gets the minimum time step for

the entire BST, ensuring that the time-marching

scheme follows the CFL condition

update_dcu function
• Parent: godunov_method

• Return: void

• This recursive function calculates the donor cell

upwind value for each grid cell in the BST (for

more information, see J1 in Section B.1)

44

Name Data Type Description

update_ctu function
• Parent: godunov_method

• Return: void

• This recursive function calculates the corner trans-

port upwind values for each grid cell in the BST

(for more information, see J1 in Section B.1)

godunov_method function
• Parent: none

• Return: void

• This function performs the Godunov scheme on

the discretized PDF, which is 2nd-order accurate

and total variation diminishing

update_prob function
• Parent: none

• Return: void

• This recursive function updates the probability of

each grid cell in the BST given the donor cell up-

wind value and corner transport upwind values

45

Name Data Type Description

mark_cells function
• Parent: prune_tree

• Return: void

• This recursive function marks cells that are below

probability threshold and do not neighbor down-

wind cells that are above probability threshold (for

more information, see C2 in Section B.2)

compare_indices function
• Parent: sort_by_double

• Return: int

• This function checks which value at two different

indices in a list is higher

sort_by_double function
• Parent: prunte_tree

• Return: void

• This function sorts an index list by a double list

delete_cells function
• Parent: prunte_tree

• Return: void

• This function loops through the sorted key index

list of the cells that were marked and deletes them

until the probability of the remaining grid cells are

above the threshold

46

Name Data Type Description

prune_tree function
• Parent: none

• Return: void

• This function deletes the necessary TreeNodes in

the BST, then reinitializes the backward and for-

ward neighbors

meas_up_recursive function
• Parent: none

• Return: void

• This recursive function updates performs a discrete

measurement update on the discretized PDF by ap-

plying Equation (3) at each grid cell

record_collisions function
• Parent: none

• Return: void

• This function records the number of collisions at

each HashTableEntry

run_gbees function
• Parent: none

• Return: void

• This function runs GBEES

47

B Publications

B.1 Refereed Journal Publications

J1 T. R. Bewley and A. S. Sharma, “Efficient grid-based Bayesian estimation of nonlinear low-

dimensional systems with sparse non-Gaussian PDFs,” Automatica, Vol. 48, No. 7, 2012,

pp. 1286-1290.

B.2 Conference Publications

C2 B. L. Hanson, A. J. Rosengren, and T. R. Bewley, “State Estimation of Chaotic Trajectories:

A Higher-Dimensional, Grid-Based, Bayesian Approach to Uncertainty Propagation,” AIAA

SCITECH 2024 Forum, AIAA, 2024.

C1 A. Sharma, T. R. Bewley, “Grid-based Bayesian Estimation Exploiting Sparsity for systems

with nongaussian uncertainty,” APS Division of Fluid Dynamics Meeting, Vol. 62, pp. ED–

005, 2009.

48

	Introduction
	Installation
	Quick Start (3D Lorenz Example)
	C implementation
	Python implementation
	Matlab visualization

	Directory Architecture
	Measurements
	PDFs

	User Input and Output
	C Implementation
	Python Implementation
	Terminal output

	Examples
	3D Lorenz Runtime Comparison
	C and Python Implementation
	Matlab Visualization

	Saturn-Enceladus 4D Distant Prograde Orbit
	C implementation
	Python implementation
	Matlab Visualization

	Jupiter-Europa 6D Low Prograde Orbit
	C implementation
	Python implementation
	Matlab Visualization

	Structure/Function Dictionary
	Publications
	Refereed Journal Publications
	Conference Publications

