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The Gaussian assumption is ubiquitous in SDA…

…but where is the Gaussian validation?

Collision Avoidance Maneuver Detection

ΔV

Orbit Determination and Uncertainty Propagation

w
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The Nonlinear State Estimation Problem

·x = f(x, t) + w, y = h(x, t) + v

Fundamental Questions 
1. How do we measure Gaussianity?

• Consider the state estimation of a general system

• If  are linear and  are Gaussian zero-mean white noise, thenf, h w, v

X(t) ∼ 𝒩 (x | μ(t), Σ(t)) = 1
(2π)d |Σ(t) |

exp (− 1
2 (x − μ(t))⊤ Σ(t)−1(x − μ(t)))

X(t) ∼ p(x, t) ≠ 𝒩 (x | μ(t), Σ(t))
• However, if  are nonlinear, then generally speakingf, h

2. How long does it take for state uncertainty to become non-Gaussian?
3. Can we predict when state uncertainty is becoming non-Gaussian with an abstraction more 
efficient to propagate than a dense Monte Carlo?
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Being “kind-of” Gaussian 
Analytical vs. Statistical De!nitions

“Being ‘kind-of’ Gaussian is like being ‘kind-of’ dead.” 
-Dr. Tom Bewley, UCSD

Analytical Definition of a Gaussian

p(x | μ; Σ) = 1
(2π)d |Σ |

exp (− 1
2 (x − μ)⊤Σ−1(x − μ))

Statistical Definition of a Gaussian



HZ = 1
n

n

∑
i=1

n

∑
j=1

exp (− β2

2 Dij) − [2 (1 + β2)− d
2

n

∑
i=1

exp (− β2

2(1 + β2) Di)] + [n(1 + 2β2)− d
2 ]

• dimensionality 
• # of Monte Carlo samples 

• , smoothing parameter 

• , Mahalanobis distance between each point and every other point 

• , Mahalanobis distance between each point and the mean

d =
n =

β = 1
2 ( n(2d + 1)

4 )
1

d + 4

Dij = (xi − xj)
⊤

Σ−1 (xi − xj)
Di = (xi − μ)⊤ Σ−1 (xi − μ)
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Henze-Zirkler Statistic
Truth Monte Carlo, xi

x(k−1)
i

 f(x, t)

• HZ is approximately log-normally distributed, so a null hypothesis  of Gaussianity may be testedH0

n = 2000
d = 2

• HZ Gaussian Validity Boundary (GVB)HZ* =

HZ > HZ*(α0 = 0.003) ⇒
HZ ≤ HZ*(α0 = 0.003) ⇒

 should be rejectedH0

 cannot be rejectedH0

x(k)
i



Log-normal CDF
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Henze-Zirkler Statistic

 f(x, t)

n = 2000
d = 2

HZ = 0.9795 HZ = 10.8537
…

… 10.8

Truth Monte Carlo, xi

x(k−1)
i

x(k)
i



 f(x, t)

Statistical Linearization (UKF)
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The Unscented Transform

“…it is easier to approximate a probability distribution than it is to approximate an arbitrary 
nonlinear function…” 

-Dr. Jeffrey Uhlmann, Inventor of the Unscented Transform

Analytical Linearization (EKF)

 F(x, t)

Σ(k−1)

μ(k−1)

Σ(k)

μ(k)

z(k)
i

μ(k)

Σ(k)
z(k−1)
i

z0 = μ

zi = μ + ( (d + κ)Σ)i

zi+d = μ − ( (d + κ)Σ)i

W0 = κ /(d + κ)

Wi+d = κ /(2(d + κ))

Wi = κ /(2(d + κ))

WeightsStates
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Normalized Euclidean Distance

• NED may be calculated from the UT sigma points alone, meaning it requires a fraction of the samples 
that the HZ requires for an accurate value 

• When  is linear, NED remains at 0; when  is nonlinear, NED may driftf(x, t) f(x, t)

NED = L−1 z0 −
2d

∑
j=0

Wjzj , where  is the inverse lower triangular of the covarianceL−1

 f(x, t)

z(k−1)
0

2d

∑
j=0

Wjz(k)
j

z(k)
0n = 2000

d = 2

2d

∑
j=0

Wjz(k−1)
j

UT sigma point, zjMonte Carlo, xiTruth



 f(x, t)

z(k−1)
0

2d

∑
j=0

Wjz(k)
j

z(k)
0

2d

∑
j=0

Wjz(k−1)
j

9

Normalized Euclidean Distance

n = 2000
d = 2

NED = 0 NED = 0.1691
• NED is not a consistent statistical test; without mapping it to a consistent statistical test (HZ) we have no 

absolute information on the likelihood that the sigma points come from a Gaussian distribution

• What about kurtosis? , NED = 0

, NED = 0

, NED = 0

UT sigma point, zjMonte Carlo, xiTruth



10

Two-Body Problem HZ-NED Mapping
• State uncertainty in closed orbits tends to oscillate between near-Gaussian during the quiescent, rectilinear phases 

and highly non-Gaussian near periapsis, as demonstrated in Flegel and Bennett*

*Flegel, S.K. and Bennett, J.C., 2020. State Uncertainty Normality Detection: Introducing an Unscented Transform-Based Test. The Journal of the Astronautical Sciences 67(3), pp.1044-1062.
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Saturn-Enceladus CR3BP Periodic Orbits

Objective: Determine the relationship (?) between HZ and NED in the Circular Restricted 
Three-Body Problem using periodic orbit families from the Saturn-Enceladus system. 

…map the HZ to the NED for the CR3BP.

Using 50 initial conditions from each of the ten following periodic orbit families…
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Time to Non-Gaussianity in CR3BP 
Saturn-Enceladus Periodic Orbit Families

• Parameters: 
• 50 initial conditions per family, 5,000 random samples per initial condition, 
• Initial uncertainty:  km,  cm/s 
•  confidence interval 

σr = 1 σv = 1
HZ* = q(α0 = 0.003) ⇒ 3σ
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Mapping HZ to NED for Saturn-Enceladus CR3BP

HZ(NED) = (9.308 ± 0.864)NED3 + (0.669 ± 0.354)NED2 + (0.232 ± 0.035)NED + (0.983 ± 0.001)
• Curve fit function (  confidence intervals):3σ

• NED GVB:

NED*(α0 = 0.003) = 0.1330 ± 0.002



Highly Inclined Saturn-Enceladus halo orbit propagated for 0.5 days, with initial uncertainty 0 m and  cm/s.σr = 10 σv = 1
*Russell, R.P. and Lara, M., 2009. On the design of an Enceladus science orbit. Acta Astronautica, 65(1-2), pp.27-39.

Highly Inclined Saturn-Enceladus Halo Orbit from Russell and Lara*

14

• First UT-only GVT prediction:

32.5 km periapsis

Utilization of NED GVB For UT-only GVT Prediction
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UT-only GVT prediction is within 11.664 minutes of a MC-based GVT 
prediction on a completely new trajectory using our derived NED*

Utilization of NED GVB For UT-only GVT Prediction
• First UT-only GVT prediction: Highly Inclined Saturn-Enceladus Halo Orbit from Russell and Lara*

*Russell, R.P. and Lara, M., 2009. On the design of an Enceladus science orbit. Acta Astronautica, 65(1-2), pp.27-39.
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Utilization of NED GVB For UT-only GVT Prediction
• Second UT-only GVT prediction:

CAPSTONE trajectory propagated for 8 days, with initial uncertainty 0 m and  mm/s.σr = 10 σv = 1

Earth-Moon CAPSTONE 9:2 NRHO
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Utilization of NED GVB For UT-only GVT Prediction

UT-only GVT prediction is within 1.584 minutes of a MC-based GVT 
prediction on a completely new trajectory using our derived NED*

• Second UT-only GVT prediction: Earth-Moon CAPSTONE 9:2 NRHO
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Conclusions
Fundamental Questions 
1. How do we measure Gaussianity?

HZ = 1
n

n

∑
i=1

n

∑
j=1

exp (− β2

2 Dij) − [2 (1 + β2)− d
2

n

∑
i=1

exp (− β2

2(1 + β2) Di)] + [n(1 + 2β2)− d
2 ]

2. How long does it take for state uncertainty to become non-Gaussian?

Family Distant 
Prograde

Southern 
Dragonfly

Northern 
Dragonfly

Southern 
Butterfly

Northern 
Butterfly

L2 
Northern 

Halo

L2 
Southern 

Halo

L1 
Southern 

Halo

L1 
Northern 

Halo

Distant 
Retrograde

t (periods) 0.022084 0.134874 0.14033 0.14059 0.14536 0.23744 0.23932 0.26968 0.27395 0.51041

• Using 500 different periodic orbits from the Saturn-Enceladus system, we successfully mapped the NED to the 
HZ for the CR3BP:  

• Performed UT-only GVT predictions of two independent trajectories with accuracy on the order of minutes
NED* = 0.1330 ± 0.002

3. Can we predict when state uncertainty is becoming non-Gaussian with an abstraction more 
efficient to propagate than a dense Monte Carlo?
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Future Work

Sparse MC Gaussianity Detection
• NED must be mapped for each uncertainty 

magnitude and dynamics model, while HZ is a 
consistent statistic no matter the model or 
uncertainty

• What are the Type I/II error rates for a sparse 
MC distribution compared for the large one 
used in this analysis?

Hybrid Moment/Ensemble Filtering
• Using the  value derived in this work, we 

can develop a hybrid filter that propagates the 
first and second moments when uncertainty is 
near-Gaussian, and an ensemble distribution 
when the uncertainty is non-Gaussian 

• Hybrid filter would be more accurate than a 
pure moment filter and more efficient than a 
pure ensemble filter

NED*
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