
GBEES-GPU: An e!cient
parallel GPU algorithm
for high-dimensional

nonlinear uncertainty
propagation

Benjamin L. Hanson
Ph.D. Student, Jacobs School of Engineering

Department of Mechanical and Aerospace Engineering
UC San Diego, La Jolla, CA

Dr. Carlos Rubio
Adjunct Professor, School of Engineering

Department of Mechanical, Computer and Aerospace Engineering
Universidad de León, León, Spain

Dr. Thomas R. Bewley
Professor, Jacobs School of Engineering

Department of Mechanical and Aerospace Engineering
UC San Diego, La Jolla, CA

Dr. Adrián García-Gutiérrez
Associate Professor, School of Engineering

Department of Mechanical, Computer and Aerospace Engineering
Universidad de León, León, Spain

Cassyni Computer Physics Communications Seminar Series

Computer Physics Communications,
10.1016/j.cpc.2025.109819

Moon

S/C ·x = f (x, v)

Moon

S/C ·x = f (x, v)t(1)

t(2)

t(3)

t(4)

t(5)How do we fuse predictions
and measurements?

x̂ : f, h, v, w = ?

y = h (x, w)
t(0)

Filters!

Current Landscape of Recursive Bayesian Filters
X

Kalman Approach Lagrangian Approach Eulerian Approach

Pros
• Optimal when systems are

linear
• Closed-form update

equations (deterministic)
• Highly efficient and

tractable

Cons
• Poor accuracy in the case

of non-Gaussian posteriors
• Possibility of divergence

when dynamics or
measurement model are
nonlinear

Pros
• Uses exact model

definitions
• Easy to implement
• Capable of handling non-

Gaussian posteriors

Cons
• Particle degeneracy

without resampling
• High sample requirements

in high dimensions
• Computationally

expensive

Pros
• Uses exact model

definitions
• Capable of handling non-

Gaussian posteriors
• Avoids particle degeneracy

by maintaining resolution

Cons
• Finite domain limitation

for standard methods
• Computationally

expensive

Current Landscape of Recursive Bayesian Filters

1. The finite domain limitation is
circumvented by dynamically allocating
grid cells in regions of non-negligible
probability

Initially Gaussian uncertainty becoming highly non-
Gaussian when subjected to the Lorenz ’63 model

2. The computational bottleneck of marching
a full, discretized, high-dimensional PDF is
overcome by exploiting the sparsity of that
PDF in most of phase space

Where most Eulerian methods suffer
and why GBEES doesn’t

Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)

• GBEES is a 2nd-order accurate, Godunov finite volume method that treats probability as a fluid,
flowing the PDF through phase space subject to the dynamics of the system

T.R. Bewley et al. (2012) Efficient grid-based Bayesian estimation of nonlinear low-dimensional systems with sparse non-Gaussian PDFs. Automatica, 48 (10.1016/j.automatica.2012.02.039)

• GBEES consists of two distinct processes, one performed in continuous-time, the other in
discrete-time:
1. Prediction: is continuous-time marched via the Fokker-Planck Equation: p(x, t)

∂p(x, t)
∂t

= −
n

∑
j=1

∂fj(x, t)p(x, t)
∂xj

+ 1
2

n

∑
j=1

n

∑
ℓ=1

∂2Qjℓ(x, t)p(x, t)
∂xj∂xℓ

✴ : advection (EOMs) in the dimension
✴ : element of the spectral density (, PDE is hyperbolic)

fi ith

qij (i, j)th Q(x, t) ≈ 0

2. Correction: at discrete-time interval , measurement updates via Bayes’ Theorem: t(k) y(k) p(x, t)

p (x, t(k+)) =
p (y(k) |x) p (x, t(k−))

C
✴ : a posteriori distribution
✴ : measurement distribution
✴ : a priori distribution
✴ : normalization constant

p (x, t(k+))
p (y(k) |x)
p (x, t(k−))
C

·x = f (x, v)

t(1)

t(2)

t(3)
t(4)

t(5)

y = h (x, w)
t(0)

Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)

Godunov-type finite volume method implemented on a uniform Cartesian 2D mesh

• Prediction: assuming process noise is relatively small
(), the 2nd-order discrete approximation ofQ(x, t) ≈ 0

p(n+1)
(i,j) − p(n)

(i,j)

Δt
= −

F(n)
(i+1/2,j) − F(n)

(i−1/2,j)

Δx
−

G(n)
(i,j+1/2) − G(n)

(i,j−1/2)

Δy
,

∂p(x, t)
∂t

= −
2

∑
j=1

∂fj(x, t)p(x, t)
∂xj

+ 1
2

2

∑
j=1

2

∑
ℓ=1

∂2Qjℓ(x, t)p(x, t)
∂xj∂xℓ

is

F(i+1/2, j)F(i−1/2, j)

G (
i,j

+1
/2

)
G (

i,j
+1

/2
) - probability at cell

- size of time step
- x-direction half-step backward flux

- x-direction half-step forward flux

- y-direction half-step backward flux

- y-direction half-step forward flux

p(n)
(i,j) = V(i,j)

Δt =
F(n)

(i−1/2,j) =
F(n)

(i+1/2,j) =
G(n)

(i,j−1/2) =
G(n)

(i,j+1/2) =

where andt = t(n)

• Correction: because we have the PDF defined over a
grid, we can directly carry out a discretized
implementation of Bayes’ Theorem

Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)

• Consider a 1-dimensional, linear test example:

x = x, dx
dt

= a, a > 0

• Initial observation of results in a Gaussian PDF centered about with standard
deviation

x(t) p(x) x0
σ

x

p(x)

x0

σ

a

How does , governed by , change with
respect to ?

p(x) dx/dt
t

Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)

Ignoring sparsity

Exploiting sparsity

Not GBEES, just a visual aid

Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)

Application: Lorenz ’63 Model

GBEES CPU-legacy Implementation

x =
x1
x2
x3

, dx
dt

=
σ(x2 − x1)
−x2 − x1x3

−b(x3 + r) − x1x2

,

• State and equations of motion of the three-
dimensional system:

where results in the chaotic
behavior seen in the right figure

{σ, b, r} = {4,1,48}

• GBEES CPU-legacy runtime for propagating
uncertainty from with
measurement update at : 28.8 s

t = [0,2] x3 = − 10
t = 1

Areas of improvement
1. Grid data structure has an time complexity, where is grid size
2. Over-conservative, fixed time step is required to maintain algorithm stability
3. No consideration for direction of upwind/downwind when creating/deleting cells
4. Parallelization by translating algorithm to CUDA and executing on GPU

𝒪 (N2) N
Initial uncertainty of and grid width of for , 2, and 3σxj

= 1 Δxj = 0.5 j = 1

GBEES CPU-optimized: Data structures

• The data structures where the -dimensional grids are stored determine time complexityn
Legacy implementation

• GBEES CPU-legacy uses a linked list which results in an time complexity during
grid growth

𝒪 (N2)

…V(0,0) V(1,0) V(0,1) V(−1,0) V(0,−1)

Optimized implementation
• GBEES CPU-optimized uses a hash table which results in an time complexity

during grid growth
𝒪 (N)

V(i,j)
 BuzHash Random Memory Address⇒ (i, j) =

J.D. Cohen (1997) Recursive hashing functions for n-grams. ACM Trans. Inf. Syst., 15 (10.1145/256163.256168)

Hashtable ……………

V(i,j−1)Memory Address X:

V(i−1,j)Memory Address Y:

V(i,j)Memory Address Z:

GBEES CPU-optimized: Adaptive time step

• In order to maintain stability, explicit finite volume methods must satisfy the Courant-
Friedrichs-Lewy (CFL) condition:

C = Δt (F
Δx

+ G
Δy) ≤ Cmax,

where is often chosen to be 1 for hyperbolic PDEsCmax

Legacy implementation
• Uses an over-restrictive so the CFL condition is always satisfiedΔt

R. Courant et al. (1967) On the partial difference equations of mathematical physics, IBM J. Res. Dev. 11 (10.1147/rd.112.0215)

GBEES CPU-optimized: Adaptive time step

• In order to maintain stability, explicit finite volume methods must satisfy the Courant-
Friedrichs-Lewy (CFL) condition:

C = Δt (F
Δx

+ G
Δy) ≤ Cmax,

where is often chosen to be 1 for hyperbolic PDEsCmax

Legacy implementation
• Uses an over-restrictive so the CFL condition is always satisfiedΔt

Optimized implementation
V(i, j)

F(k)
(i−1/2,j)

G
(k

) (i,
j−

1/
2)

Δt(k) = min
(i, j) ∈grid

F(k)
(i−1/2,j)
Δx

+
G(k)

(i,j−1/2)
Δy

−1

• Uses an adaptive, CFL-minimized time step for maximum
efficiency

R. Courant et al. (1967) On the partial difference equations of mathematical physics, IBM J. Res. Dev. 11 (10.1147/rd.112.0215)

GBEES CPU-optimized: Directional growing/pruning

Directional Growing
• Legacy implementation has no consideration for fluxing direction when growing grid
• Optimized implementation only creates downwind grid cells when growing grid

of cells checked: 3n − 1 Max # of cells checked: 2n − 1

Directional Pruning
• Legacy implementation has no consideration for fluxing direction when pruning grid
• Optimized implementation only checks upwind grid cells when pruning grid

of cells checked: 3n − 1 Max # of cells checked: 2n − 1

GBEES CPU-optimized: Directional growing/pruning

GBEES-GPU: Introduction

• Because GBEES exploits sparsity, parallelization of the dynamic grid is nontrivial

Not GBEES, just a visual aid

• Subdomains are statically assigned to thread
blocks

• Works for low-dimensional problems with
predictable grid size

• Problem: number of cells grows exponentially with
dimension, so static partitioning becomes infeasible

Traditional Approach to Grid Parallelization

• Utilization of dynamic grid allocation and
specialized data structures (hashtables, used
and free lists)

• Flexible cell-to-thread assignment and extra
synchronization algorithms (atomic ops,
barriers)

• Parallel techniques optimized for CUDA

GBEES-GPU Approach to Grid Parallelization

2. Used List
• Maintains indices of

active cells for efficient
iteration during
updates

3. Heap
• Stores the actual cell data
• Fixed-size allocation (due

to CUDA constraints)
sets the maximum
number of cells per
configuration

4. Free List
• Tracks unused heap slots
• Minimizes overhead when

allocating new cells

• Provides random access to cells by their grid index
• Enables fast neighbor lookups for cell-level operations and even

workload distribution across active threads

𝒪(1)
1. Hashtable

GBEES-GPU: Data structures

The implementation is divided into two main categories of operations:

GBEES-GPU: Implementation

1. Cell-level Operations
• Includes updating probability and applying measurement
• Each thread modifies its assigned cell, requiring only fast access

to the cell itself and it’s immediate neighbor
• This fast access is enabled via the Used List, which ensures

memory locality and efficient thread execution

t = t(k)

t = t(end)

2. Grid-level Operations
• Includes growing grid and pruning grid
• Grid growth occurs at every step, but pruning the grid

occurs every steps defined by the user
• To maximize CUDA performance, these operations are

coordinated using atomic operations and
synchronization barriers

m

GBEES-GPU algorithm flow chart

GBEES-GPU: Synchronization Aspects

Grid Growing
• Concurrent insertion to avoid thread blocking
• Uses callback initialization for performance

improvement after confirming cell uniqueness
• Race conditions prevented with staged growth:

1. Forward axis global sync
2. Backward axis global sync
3. Diagonal directions global sync

→
→

→

• Runs infrequently but needs full parallelization
Grid Pruning

1. Mark low-probability cells for removal
2. Prefix sum (scan) to compact Used List

(double-buffer in shared memory)
3. Add freed slots to Free List (atomic ops)
4. Rehash hash table using double-buffer scheme

GBEES-GPU: Parallel Reduction and Parallel Scan

Parallel Reduction — Normalization
• Goal: sum all grid-cell probabilities to normalize the

distribution
• Per-thread: accumulate the sum of its assigned cells
• Intra-block: reduced in shared memory using

sequential addressing
• Outer reduction: first thread of each block writes

its block sum; followed by a global reduction
• Output: total probability

Parallel Scan — Prune/Compaction
• Goal: compact the Used List (and update the Free

List) during pruning
• Intra-block: inclusive scan with sequential

addressing in shared memory using a double buffer
• Accumulate the total of each block
• Outer exclusive scan
• Output: compact Used List, updated Free List

https://developer.nvidia.com/gpugems

Applications: Lorenz ’63 Model

Revisiting Application: Lorenz ’63 Model

Device Runtime (ms) Cell/s Speed-up
CPU-legacy Apple M2 MAX 28777 ≈0.54M/s 0.072
CPU-optimized Apple M2 MAX 2077 ≈3.13M/s 1
GPU 1: NVIDIA Tesla V100 244 ≈26.6M/s 8.5
GPU 2: NVIDIA A100 258 ≈25.2M/s 8.1
GPU 3: NVIDIA H100 226 ≈28.8M/s 9.2
GPU 4: NVIDIA H200 230 ≈28.3M/s 9.0

• Analyzing the performance
results, the CPU-optimized
achieves a 13.9 speedup
compared to the CPU-legacy
and the best GPU
performance achieves a 9.2
speedup when compared to
the CPU-optimized

×

×

Applications: Lorenz ’96 Model

• An -dimensional chaotic attractor with
equations of motion

n

dxj

dt
= (xj+1 + xj−2) xj−1 − xj + F,

where is an unstable
equilibrium

x* = (F, …, F)

• To convert the discretized 6D PDFs into two, 3D PDFs, we numerically integrate:

p(x1, x2, x3, t) = ∫
min(x6)

min(x6)
∫

min(x5)

min(x5)
∫

min(x4)

min(x4)
p(x, t)dx4 dx5 dx6 p(x4, x5, x6, t) = ∫

min(x3)

min(x3)
∫

min(x2)

min(x2)
∫

min(x1)

min(x1)
p(x, t)dx1 dx2 dx3and

• We use a 6D variation with to
compare our CPU-legacy, CPU-
optimized and GPU versions,
propagating uncertainty from
with no measurement updates

F = 4

t = [0,1.3]
Initial uncertainty of and grid width of for σxj

= 0.2 Δxj = 0.1 j = 1,…, 6

New Application: Lorenz ’96 Model

Applications: Lorenz ’96 Model

New Application: Lorenz ’96 Model

Device Runtime (s) Cell/s Speed-up
CPU-optimized Apple M2 MAX 97927 ≈0.3M/s 1
GPU 1: NVIDIA Tesla V100 5513 ≈5.4M/s 17.8
GPU 2: NVIDIA A100 1736 ≈17.3M/s 56.4
GPU 3: NVIDIA H100 919 ≈32.6M/s 106.6
GPU 4: NVIDIA H200 739 ≈40.6M/s 132.5

• Due to dimensionality, this
example is computationally
infeasible for CPU-legacy version,
but the best GPU performance
achieves a 132.5 speedup when
compared to the CPU-optimized

• This implies a speedup
when compared to the CPU-legacy

×

∼103×

Conclusions

• CPU optimization and GPU execution make Eulerian uncertainty
propagation for six-dimensional systems computationally feasible

• When compared to GBEES CPU-legacy, the results of the Lorenz
’96 application are a speedup in the CPU-optimized
version and an implied speedup in the GPU version

∼10×
∼103×

• Performance of the new GBEES implementations depends on grid
size and GPU occupancy:
- Lorenz ’63: grid too small for full GPU utilization modest

gains
‣ CUDA version: 8.5-9.0 faster than optimized by CPU

- Lorenz ‘96: high computational load fully exploits GPU
parallelism
‣ On V100: 17.8 faster than optimized CPU
‣ On A100: 56.4 faster
‣ On H100: 106.6 faster
‣ On H200: 132.5 faster

→

×
→

×
×

×
×

Lorenz ’63 model application

Lorenz ’96 model application

This investigation was supported by the NASA Space Technology Graduate
Research Opportunities Fellowship (Grant #80NSSC23K1219)

CPC Paper GBEES CPU-optimized GBEES-GPU

Thank you to everyone that attended this Cassyni CPC Seminar!

