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Moon

S/C ·x = f (x, v)t(1)

t(2)

t(3)

t(4)

t(5)How do we fuse predictions 
and measurements?

x̂ : f, h, v, w = ?

y = h (x, w)
t(0)

Filters!



Current Landscape of Recursive Bayesian Filters
X



Kalman Approach Lagrangian Approach Eulerian Approach

Pros
• Optimal when systems are 

linear 
• Closed-form update 

equations (deterministic) 
• Highly efficient and 

tractable

Cons
• Poor accuracy in the case 

of non-Gaussian posteriors 
• Possibility of divergence 

when dynamics or 
measurement model are 
nonlinear

Pros
• Uses exact model 

definitions 
• Easy to implement 
• Capable of handling non-

Gaussian posteriors

Cons
• Particle degeneracy 

without resampling 
• High sample requirements 

in high dimensions 
• Computationally 

expensive

Pros
• Uses exact model 

definitions 
• Capable of handling non-

Gaussian posteriors 
• Avoids particle degeneracy 

by maintaining resolution 

Cons
• Finite domain limitation 

for standard methods 
• Computationally 

expensive

Current Landscape of Recursive Bayesian Filters



1. The finite domain limitation is 
circumvented by dynamically allocating 
grid cells in regions of non-negligible 
probability

Initially Gaussian uncertainty becoming highly non-
Gaussian when subjected to the Lorenz ’63 model

2. The computational bottleneck of marching 
a full, discretized, high-dimensional PDF is 
overcome by exploiting the sparsity of that 
PDF in most of phase space

Where most Eulerian methods suffer 
and why GBEES doesn’t

Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)

• GBEES is a 2nd-order accurate, Godunov finite volume method that treats probability as a fluid, 
flowing the PDF through phase space subject to the dynamics of the system

T.R. Bewley et al. (2012) Efficient grid-based Bayesian estimation of nonlinear low-dimensional systems with sparse non-Gaussian PDFs. Automatica, 48 (10.1016/j.automatica.2012.02.039)



• GBEES consists of two distinct processes, one performed in continuous-time, the other in 
discrete-time:
1. Prediction:  is continuous-time marched via the Fokker-Planck Equation: p(x, t)

∂p(x, t)
∂t

= −
n

∑
j=1

∂fj(x, t)p(x, t)
∂xj

+ 1
2

n

∑
j=1

n

∑
ℓ=1

∂2Qjℓ(x, t)p(x, t)
∂xj∂xℓ

✴ : advection (EOMs) in the  dimension 
✴ :  element of the spectral density ( , PDE is hyperbolic)

fi ith

qij (i, j)th Q(x, t) ≈ 0

2. Correction: at discrete-time interval , measurement  updates  via Bayes’ Theorem: t(k) y(k) p(x, t)

p (x, t(k+)) =
p (y(k) |x) p (x, t(k−))

C
✴ : a posteriori distribution 
✴ : measurement distribution 
✴ : a priori distribution 
✴ : normalization constant

p (x, t(k+))
p (y(k) |x)
p (x, t(k−))
C

·x = f (x, v)

t(1)

t(2)

t(3)
t(4)

t(5)

y = h (x, w)
t(0)

Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)



Godunov-type finite volume method implemented on a uniform Cartesian 2D mesh 

• Prediction: assuming process noise is relatively small 
( ), the 2nd-order discrete approximation ofQ(x, t) ≈ 0

p(n+1)
(i,j) − p(n)

(i,j)

Δt
= −

F(n)
(i+1/2,j) − F(n)

(i−1/2,j)

Δx
−

G(n)
(i,j+1/2) − G(n)

(i,j−1/2)

Δy
,

∂p(x, t)
∂t

= −
2

∑
j=1

∂fj(x, t)p(x, t)
∂xj

+ 1
2

2

∑
j=1

2

∑
ℓ=1

∂2Qjℓ(x, t)p(x, t)
∂xj∂xℓ

is

F(i+1/2, j)F(i−1/2, j)

G (
i,j

+1
/2

)
G (

i,j
+1

/2
) - probability at cell  

- size of time step 
- x-direction half-step backward flux 

- x-direction half-step forward flux 

- y-direction half-step backward flux 

- y-direction half-step forward flux

p(n)
(i,j) = V(i,j)

Δt =
F(n)

(i−1/2,j) =
F(n)

(i+1/2,j) =
G(n)

(i,j−1/2) =
G(n)

(i,j+1/2) =

where  andt = t(n)

• Correction: because we have the PDF defined over a 
grid, we can directly carry out a discretized 
implementation of Bayes’ Theorem

Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)



• Consider a 1-dimensional, linear test example:

x = x, dx
dt

= a, a > 0

• Initial observation of  results in a Gaussian PDF  centered about  with standard 
deviation 

x(t) p(x) x0
σ

x

p(x)

x0

σ

a

How does , governed by , change with 
respect to ?

p(x) dx/dt
t

Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)



Ignoring sparsity

Exploiting sparsity

Not GBEES, just a visual aid

Grid-based Bayesian Estimation Exploiting Sparsity (GBEES)



Application: Lorenz ’63 Model

GBEES CPU-legacy Implementation

x =
x1
x2
x3

, dx
dt

=
σ(x2 − x1)
−x2 − x1x3

−b(x3 + r) − x1x2

,

• State and equations of motion of the three-
dimensional system:

where  results in the chaotic 
behavior seen in the right figure

{σ, b, r} = {4,1,48}

• GBEES CPU-legacy runtime for propagating 
uncertainty from  with  
measurement update at : 28.8 s

t = [0,2] x3 = − 10
t = 1

Areas of improvement
1. Grid data structure has an  time complexity, where  is grid size 
2. Over-conservative, fixed time step is required to maintain algorithm stability 
3. No consideration for direction of upwind/downwind when creating/deleting cells 
4. Parallelization by translating algorithm to CUDA and executing on GPU

𝒪 (N2) N
Initial uncertainty of  and grid width of  for , 2, and 3σxj

= 1 Δxj = 0.5 j = 1



GBEES CPU-optimized: Data structures

• The data structures where the -dimensional grids are stored determine time complexityn
Legacy implementation

• GBEES CPU-legacy uses a linked list which results in an  time complexity during 
grid growth

𝒪 (N2)

…V(0,0) V(1,0) V(0,1) V(−1,0) V(0,−1)

Optimized implementation
• GBEES CPU-optimized uses a hash table which results in an  time complexity 

during grid growth
𝒪 (N)

V(i,j)
 BuzHash Random Memory Address⇒ (i, j) =

J.D. Cohen (1997) Recursive hashing functions for n-grams. ACM Trans. Inf. Syst., 15 (10.1145/256163.256168)

Hashtable ……………

V(i,j−1)Memory Address X:

V(i−1,j)Memory Address Y:

V(i,j)Memory Address Z:



GBEES CPU-optimized: Adaptive time step

• In order to maintain stability, explicit finite volume methods must satisfy the Courant-
Friedrichs-Lewy (CFL) condition:

C = Δt ( F
Δx

+ G
Δy ) ≤ Cmax,

where  is often chosen to be 1 for hyperbolic PDEsCmax

Legacy implementation
• Uses an over-restrictive  so the CFL condition is always satisfiedΔt

R. Courant et al. (1967) On the partial difference equations of mathematical physics, IBM J. Res. Dev. 11 (10.1147/rd.112.0215)



GBEES CPU-optimized: Adaptive time step

• In order to maintain stability, explicit finite volume methods must satisfy the Courant-
Friedrichs-Lewy (CFL) condition:

C = Δt ( F
Δx

+ G
Δy ) ≤ Cmax,

where  is often chosen to be 1 for hyperbolic PDEsCmax

Legacy implementation
• Uses an over-restrictive  so the CFL condition is always satisfiedΔt

Optimized implementation
V(i, j)

F(k)
(i−1/2,j)

G
(k

) (i,
j−

1/
2 )

Δt(k) = min
(i, j) ∈grid

F(k)
(i−1/2,j)
Δx

+
G(k)

(i,j−1/2)
Δy

−1

• Uses an adaptive, CFL-minimized time step for maximum 
efficiency

R. Courant et al. (1967) On the partial difference equations of mathematical physics, IBM J. Res. Dev. 11 (10.1147/rd.112.0215)



GBEES CPU-optimized: Directional growing/pruning

Directional Growing
• Legacy implementation has no consideration for fluxing direction when growing grid 
• Optimized implementation only creates downwind grid cells when growing grid

# of cells checked: 3n − 1 Max # of cells checked: 2n − 1



Directional Pruning
• Legacy implementation has no consideration for fluxing direction when pruning grid 
• Optimized implementation only checks upwind grid cells when pruning grid

# of cells checked: 3n − 1 Max # of cells checked: 2n − 1

GBEES CPU-optimized: Directional growing/pruning



GBEES-GPU: Introduction

• Because GBEES exploits sparsity, parallelization of the dynamic grid is nontrivial

Not GBEES, just a visual aid

• Subdomains are statically assigned to thread 
blocks 

• Works for low-dimensional problems with 
predictable grid size 

• Problem: number of cells grows exponentially with 
dimension, so static partitioning becomes infeasible

Traditional Approach to Grid Parallelization

• Utilization of dynamic grid allocation and 
specialized data structures (hashtables, used 
and free lists) 

• Flexible cell-to-thread assignment and extra 
synchronization algorithms (atomic ops, 
barriers) 

• Parallel techniques optimized for CUDA

GBEES-GPU Approach to Grid Parallelization



2. Used List
• Maintains indices of 

active cells for efficient 
iteration during 
updates

3. Heap
• Stores the actual cell data 
• Fixed-size allocation (due 

to CUDA constraints) 
sets the maximum 
number of cells per 
configuration

4. Free List
• Tracks unused heap slots 
• Minimizes overhead when 

allocating new cells

• Provides  random access to cells by their grid index 
• Enables fast neighbor lookups for cell-level operations and even 

workload distribution across active threads

𝒪(1)
1. Hashtable

GBEES-GPU: Data structures



The implementation is divided into two main categories of operations:

GBEES-GPU: Implementation

1. Cell-level Operations
• Includes updating probability and applying measurement 
• Each thread modifies its assigned cell, requiring only fast access 

to the cell itself and it’s immediate neighbor 
• This fast access is enabled via the Used List, which ensures 

memory locality and efficient thread execution

t = t(k)

t = t(end)

2. Grid-level Operations
• Includes growing grid and pruning grid 
• Grid growth occurs at every step, but pruning the grid 

occurs every  steps defined by the user 
• To maximize CUDA performance, these operations are 

coordinated using atomic operations and 
synchronization barriers

m

GBEES-GPU algorithm flow chart



GBEES-GPU: Synchronization Aspects 

Grid Growing
• Concurrent insertion to avoid thread blocking 
• Uses callback initialization for performance 

improvement after confirming cell uniqueness 
• Race conditions prevented with staged growth:

1. Forward axis  global sync 
2. Backward axis  global sync 
3. Diagonal directions  global sync

→
→

→

• Runs infrequently but needs full parallelization
Grid Pruning

1. Mark low-probability cells for removal 
2. Prefix sum (scan) to compact Used List 

(double-buffer in shared memory) 
3. Add freed slots to Free List (atomic ops) 
4. Rehash hash table using double-buffer scheme



GBEES-GPU: Parallel Reduction and Parallel Scan

Parallel Reduction — Normalization
• Goal: sum all grid-cell probabilities to normalize the 

distribution 
• Per-thread: accumulate the sum of its assigned cells 
• Intra-block: reduced in shared memory using 

sequential addressing 
• Outer reduction: first thread of each block writes 

its block sum; followed by a global reduction 
• Output: total probability

Parallel Scan — Prune/Compaction
• Goal: compact the Used List (and update the Free 

List) during pruning 
• Intra-block: inclusive scan with sequential 

addressing in shared memory using a double buffer 
• Accumulate the total of each block 
• Outer exclusive scan 
• Output: compact Used List, updated Free List

https://developer.nvidia.com/gpugems



Applications: Lorenz ’63 Model

Revisiting Application: Lorenz ’63 Model

Device Runtime (ms) Cell/s Speed-up
CPU-legacy Apple M2 MAX 28777 ≈0.54M/s 0.072
CPU-optimized Apple M2 MAX 2077 ≈3.13M/s 1
GPU 1: NVIDIA Tesla V100 244 ≈26.6M/s 8.5
GPU 2: NVIDIA A100 258 ≈25.2M/s 8.1
GPU 3: NVIDIA H100 226 ≈28.8M/s 9.2
GPU 4: NVIDIA H200 230 ≈28.3M/s 9.0

• Analyzing the performance 
results, the CPU-optimized 
achieves a 13.9  speedup 
compared to the CPU-legacy 
and the best GPU 
performance achieves a 9.2  
speedup when compared to 
the CPU-optimized

×

×



Applications: Lorenz ’96 Model

• An -dimensional chaotic attractor with 
equations of motion

n

dxj

dt
= (xj+1 + xj−2) xj−1 − xj + F,

where  is an unstable 
equilibrium 

x* = (F, …, F)

• To convert the discretized 6D PDFs into two, 3D PDFs, we numerically integrate:

p(x1, x2, x3, t) = ∫
min(x6)

min(x6)
∫

min(x5)

min(x5)
∫

min(x4)

min(x4)
p(x, t)dx4 dx5 dx6 p(x4, x5, x6, t) = ∫

min(x3)

min(x3)
∫

min(x2)

min(x2)
∫

min(x1)

min(x1)
p(x, t)dx1 dx2 dx3and

• We use a 6D variation with  to 
compare our CPU-legacy, CPU-
optimized and GPU versions, 
propagating uncertainty from  
with no measurement updates

F = 4

t = [0,1.3]
Initial uncertainty of  and grid width of  for σxj

= 0.2 Δxj = 0.1 j = 1,…, 6

New Application: Lorenz ’96 Model



Applications: Lorenz ’96 Model

New Application: Lorenz ’96 Model

Device Runtime (s) Cell/s Speed-up
CPU-optimized Apple M2 MAX 97927 ≈0.3M/s 1
GPU 1: NVIDIA Tesla V100 5513 ≈5.4M/s 17.8
GPU 2: NVIDIA A100 1736 ≈17.3M/s 56.4
GPU 3: NVIDIA H100 919 ≈32.6M/s 106.6
GPU 4: NVIDIA H200 739 ≈40.6M/s 132.5

• Due to dimensionality, this 
example is computationally 
infeasible for CPU-legacy version, 
but the best GPU performance 
achieves a 132.5  speedup when 
compared to the CPU-optimized 

• This implies a  speedup 
when compared to the CPU-legacy 

×

∼103×



Conclusions

• CPU optimization and GPU execution make Eulerian uncertainty 
propagation for six-dimensional systems computationally feasible 

• When compared to GBEES CPU-legacy, the results of the Lorenz 
’96 application are a  speedup in the CPU-optimized 
version and an implied  speedup in the GPU version

∼10×
∼103×

• Performance of the new GBEES implementations depends on grid 
size and GPU occupancy: 
- Lorenz ’63: grid too small for full GPU utilization  modest 

gains 
‣ CUDA version: 8.5-9.0  faster than optimized by CPU 

- Lorenz ‘96: high computational load  fully exploits GPU 
parallelism 
‣ On V100: 17.8  faster than optimized CPU 
‣ On A100: 56.4  faster 
‣ On H100: 106.6  faster 
‣ On H200: 132.5  faster

→

×
→

×
×

×
×

Lorenz ’63 model application

Lorenz ’96 model application
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