

PREDICTING THE TEMPORAL LIMITS OF GAUSSIANITY IN THE SATURN-ENCELADUS SYSTEM WITH THE UNSCENTED TRANSFORM

Benjamin L. Hanson

Ph.D. Student, Jacobs School of Engineering
Department of Mechanical and Aerospace Engineering
UC San Diego, La Jolla, CA

Dr. Aaron J. Rosengren

Assistant Professor, Jacobs School of Engineering
Department of Mechanical and Aerospace Engineering
UC San Diego, La Jolla, CA

Dr. Thomas R. Bewley

Professor, Jacobs School of Engineering
Department of Mechanical and Aerospace Engineering
UC San Diego, La Jolla, CA

Dr. Todd A. Ely

Principal Navigation Engineer
Jet Propulsion Laboratory, California Institute of Technology
Pasadena, CA

The Nonlinear State Estimation Problem

• Consider the state estimation of a general system

$$\dot{x} = f(x, t) + w, \quad y = h(x, t) + v$$

where $x \in \mathbb{R}^d$ is a realization of random variable X

• If f, h are linear and w, v are Gaussian zero-mean white noise, then

$$X(t) \sim \mathcal{N}\left(\boldsymbol{\mu}(t), \boldsymbol{\Sigma}(t)\right) = \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}(t)|}} \exp\left(-\frac{1}{2} \left(\boldsymbol{x} - \boldsymbol{\mu}(t)\right)^T \boldsymbol{\Sigma}(t)^{-1} \left(\boldsymbol{x} - \boldsymbol{\mu}(t)\right)\right)$$

• However, if **f**, **h** are nonlinear, then generally speaking

$$X(t) \sim p(x, t) \neq \mathcal{N}(\mu(t), \Sigma(t))$$

Fundamental Questions

- 1. How do we measure Gaussianity?
- 2. How long does it take for state uncertainty to become non-Gaussian?
- 3. Can we predict when state uncertainty is becoming non-Gaussian with an abstraction more efficient to propagate than a dense Monte Carlo?

Being "kind-of" Gaussian

Analytical vs. Statistical Definitions

"Being 'kind-of' Gaussian is like being 'kind-of' dead."

-Dr. Tom Bewley, UCSD

Analytical Definition of a Gaussian

$$p(\mathbf{x} \mid \boldsymbol{\mu}; \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^d \mid \boldsymbol{\Sigma} \mid}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

Statistical Definition of a Gaussian

A Monte Carlo comparison of the Type I and Type II error rates of tests of multivariate normality

CHRISTOPHER J. MECKLIN†* and DANIEL J. MUNDFROM‡

†Department of Mathematics and Statistics, Murray State University, Murray, KY 42071, USA ‡Department of Applied Statistics and Research Methods, University of Northern Colorado, CO, USA

	Table 1. Tests of MVN.	
Test	Class	Iris setosa
Mardia's skewness Mardia's kurtosis Hawkins Koziol Mardia–Foster Royston PRS Henze–Zirkler	Skewness/kurtosis Skewness/kurtosis Goodness-of-fit Goodness-of-fit Skewness/kurtosis Goodness-of-fit Goodness-of-fit Consistent	Do not reject Do not reject Reject Do not reject Reject Reject Reject Do not reject Do not reject
Mardia–Kent Romeu–Ozturk Singh (classical) Singh (robust) MSL	Skewness/kurtosis Goodness-of-fit Graphical/Correlational Graphical/Correlational Goodness-of-fit	Do not reject Reject Reject Reject Do not reject

Henze-Zirkler Statistic

$$=2$$

Truth

lacksquare Monte Carlo, $oldsymbol{x}_i$

 $HZ > HZ^*(\alpha = 0.003)$

 $HZ \le HZ^*(\alpha = 0.003)$

$$d = 2$$
$$n = 2000$$

$$HZ = \left[\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \exp\left(-\frac{\beta^{2}}{2}D_{ij}\right) \right] - \left[2\left(1+\beta^{2}\right)^{-\frac{d}{2}} \sum_{i=1}^{n} \exp\left(-\frac{\beta^{2}}{2(1+\beta^{2})}D_{i}\right) \right] + \left[n(1+2\beta^{2})^{-\frac{d}{2}} \right]$$

- d = dimensionality
- n = # of Monte Carlo samples
- $\beta = \frac{1}{\sqrt{2}} \left(\frac{n(2d+1)}{4} \right)^{\frac{1}{d+4}}$, smoothing parameter
- $D_{ij} = (\mathbf{x}_i^{(k)} \mathbf{x}_j^{(k)})^T \Sigma^{(k)-1} (\mathbf{x}_i^{(k)} \mathbf{x}_j^{(k)})$, Mahalanobis distance between each point and every other point
- $D_i = \left(\mathbf{x}_i^{(k)} \boldsymbol{\mu}^{(k)}\right)^T \Sigma^{(k)^{-1}} \left(\mathbf{x}_i^{(k)} \boldsymbol{\mu}^{(k)}\right)$, Mahalanobis distance between each point and the mean
- HZ is approximately log-normally distributed, so a null hypothesis H_0 of Gaussianity may be tested

 H_0 should be rejected

 H_0 cannot be rejected

Henze-Zirkler Statistic

The Unscented Transform

"...it is easier to approximate a probability distribution than it is to approximate an arbitrary nonlinear function..."

-Dr. Jeffrey Uhlmann, Inventor of the Unscented Transform

Analytical Linearization (EKF)

Statistical Linearization (UKF)

States	Weights	$z_i^{(k-1)}$		$Z_i^{(\kappa)}$
$\boldsymbol{z}_0^{(k-1)} = \boldsymbol{\mu}^{(k-1)}$	$W_0^{(k-1)} = \kappa/(d+\kappa)$			
$z_i^{(k-1)} = \boldsymbol{\mu}^{(k-1)} + \left(\sqrt{(d+\kappa)\Sigma^{(k-1)}}\right)$	$)_{i} \qquad W_{i}^{(k-1)} = \kappa / \left(2(d+\kappa) \right) $		$\rightarrow f(x)$	
$z_{i+d}^{(k-1)} = \mu^{(k-1)} - \left(\sqrt{(d+\kappa)\Sigma^{(k-1)}}\right)$	$)_{i} \qquad W_{i+d}^{(k-1)} = \kappa / \left(2(d+\kappa) \right) $	•		

Normalized Euclidean Distance

- NED may be calculated from the UT sigma points alone, meaning it requires a fraction of the samples that the HZ requires for an accurate value
- When f(x) is linear, NED remains at 0; when f(x) is nonlinear, NED may drift

Normalized Euclidean Distance

- NED is not a consistent statistical test; without mapping it to a consistent statistical test (HZ) we have no absolute information on the likelihood that the sigma points come from a Gaussian distribution
- What about kurtosis?

Two-Body Problem HZ-NED Mapping

• State uncertainty in closed orbits tends to oscillate between near-Gaussian during the quiescent, rectilinear phases and highly non-Gaussian near periapsis

Two-Body Problem HZ-NED Mapping

• State uncertainty in closed orbits tends to oscillate between near-Gaussian during the quiescent, rectilinear phases and highly non-Gaussian near periapsis

Saturn-Enceladus CR3BP Periodic Orbits

Objective: Determine the relationship (?) between HZ and NED in the Circular Restricted Three-Body Problem using periodic orbit families from the Saturn-Enceladus system.

Using 50 initial conditions from each of the ten following periodic orbit families...

...map the HZ to the NED for the CR3BP.

Saturn-Enceladus Periodic Orbit Families

- Parameters:
 - 50 initial conditions per family, 5,000 random sample size per initial condition,
 - Initial uncertainty: $\sigma_r = 1 \text{ km}$, $\sigma_v = 1 \text{ cm/s}$
 - $\mathrm{HZ}^*(\alpha=0.003)\Rightarrow 3\sigma$ confidence interval

Family	Time to Non-Gaussianity*
Distant Prograde	$0.022084 \pm 0.00046 \text{ periods}$
Southern Dragonfly	$0.134874 \pm 0.0029 \text{ periods}$
Northern Dragonfly	$0.14033 \pm 0.001 \text{ periods}$
Southern Butterfly	$0.14059 \pm 0.002 \text{ periods}$
Northern Butterfly	$0.14536 \pm 0.002 \text{ periods}$
L2 Northern Halo	0.23744 ± 0.0016 periods
L2 Southern Halo	0.23932 ± 0.0019 periods
L1 Southern Halo	$0.26968 \pm 0.0067 \text{ periods}$
L1 Northern Halo	$0.27395 \pm 0.004 \text{ periods}$
Distant Retrograde	$0.51041 \pm 0.012 \text{ periods}$

¹²

Distant Prograde
Distant Retrograde L_1 Northern Halo L_1 Southern Halo L_2 Northern Halo L_2 Southern Halo
Northern Butterfly
Southern Butterfly
Northern Dragonfly
Southern Dragonfly

Saturn-Enceladus Periodic Orbit Families

- Parameters:
 - 50 initial conditions per family, 5,000 random sample size per initial condition,
 - Initial uncertainty: $\sigma_r = 1 \text{ km}$, $\sigma_v = 1 \text{ cm/s}$
 - $\mathrm{HZ}^*(\alpha=0.003)\Rightarrow 3\sigma$ confidence interval

Family	Time to Non-Gaussianity*
Distant Prograde	$0.022084 \pm 0.00046 \text{ periods}$
Southern Dragonfly	$0.134874 \pm 0.0029 \text{ periods}$
Northern Dragonfly	$0.14033 \pm 0.001 \text{ periods}$
Southern Butterfly	$0.14059 \pm 0.002 \text{ periods}$
Northern Butterfly	$0.14536 \pm 0.002 \text{ periods}$
L2 Northern Halo	0.23744 ± 0.0016 periods
L2 Southern Halo	0.23932 ± 0.0019 periods
L1 Southern Halo	$0.26968 \pm 0.0067 \text{ periods}$
L1 Northern Halo	$0.27395 \pm 0.004 \text{ periods}$
Distant Retrograde	$0.51041 \pm 0.012 \text{ periods}$

¹³

Saturn-Enceladus Periodic Orbit Families

- Parameters:
 - 50 initial conditions per family, 5,000 random sample size per initial condition,
 - Initial uncertainty: $\sigma_r = 1 \text{ km}$, $\sigma_v = 1 \text{ cm/s}$
 - $\mathrm{HZ}^*(\alpha=0.003)\Rightarrow 3\sigma$ confidence interval

Family	Time to Non-Gaussianity*
Distant Prograde	0.022084 ± 0.00046 periods
Southern Dragonfly	$0.134874 \pm 0.0029 \text{ periods}$
Northern Dragonfly	$0.14033 \pm 0.001 \text{ periods}$
Southern Butterfly	$0.14059 \pm 0.002 \text{ periods}$
Northern Butterfly	$0.14536 \pm 0.002 \text{ periods}$
L2 Northern Halo	0.23744 ± 0.0016 periods
L2 Southern Halo	0.23932 ± 0.0019 periods
L1 Southern Halo	$0.26968 \pm 0.0067 \text{ periods}$
L1 Northern Halo	$0.27395 \pm 0.004 \text{ periods}$
Distant Retrograde	0.51041 ± 0.012 periods

 $-L_1$ Northern Halo $-L_1$ Southern Halo $-L_2$ Northern Halo $-L_2$ Southern Halo Northern Butterfly

Southern Butterfly
Northern Dragonfly
Southern Dragonfly

Distant Prograde
Distant Retrograde

Saturn-Enceladus Periodic Orbit Families

• Parameters:

- 50 initial conditions per family, 5,000 random sample size per initial condition,
- Initial uncertainty: $\sigma_r = 1 \text{ km}$, $\sigma_v = 1 \text{ cm/s}$
- $\mathrm{HZ}^*(\alpha=0.003)\Rightarrow 3\sigma$ confidence interval

Family	Time to Non-Gaussianity*
Distant Prograde	0.022084 ± 0.00046 periods
Southern Dragonfly	$0.134874 \pm 0.0029 \text{ periods}$
Northern Dragonfly	0.14033 ± 0.001 periods
Southern Butterfly	$0.14059 \pm 0.002 \text{ periods}$
Northern Butterfly	$0.14536 \pm 0.002 \text{ periods}$
L2 Northern Halo	0.23744 ± 0.0016 periods
L2 Southern Halo	$0.23932 \pm 0.0019 \text{ periods}$
L1 Southern Halo	0.26968 ± 0.0067 periods
L1 Northern Halo	$0.27395 \pm 0.004 \text{ periods}$
Distant Retrograde	0.51041 ± 0.012 periods

 L_2 Northern Halo L_2 Southern Halo Northern Butterfly Southern Butterfly Northern Dragonfly Southern Dragonfly

Distant Prograde
Distant Retrograde

 L_1 Northern Halo L_1 Southern Halo

Distant Prograde
Distant Retrograde L_1 Northern Halo L_1 Southern Halo L_2 Northern Halo L_2 Southern Halo
Northern Butterfly
Southern Butterfly
Northern Dragonfly
Southern Dragonfly

Saturn-Enceladus Periodic Orbit Families

• Parameters:

- 50 initial conditions per family, 5,000 random sample size per initial condition,
- Initial uncertainty: $\sigma_r = 1 \text{ km}$, $\sigma_v = 1 \text{ cm/s}$
- $\mathrm{HZ}^*(\alpha=0.003)\Rightarrow 3\sigma$ confidence interval

Family	Time to Non-Gaussianity*
Distant Prograde	0.022084 ± 0.00046 periods
Southern Dragonfly	$0.134874 \pm 0.0029 \text{ periods}$
Northern Dragonfly	$0.14033 \pm 0.001 \text{ periods}$
Southern Butterfly	0.14059 ± 0.002 periods
Northern Butterfly	$0.14536 \pm 0.002 \text{ periods}$
L2 Northern Halo	$0.23744 \pm 0.0016 \text{ periods}$
L2 Southern Halo	$0.23932 \pm 0.0019 \text{ periods}$
L1 Southern Halo	$0.26968 \pm 0.0067 \text{ periods}$
L1 Northern Halo	$0.27395 \pm 0.004 \text{ periods}$
Distant Retrograde	$0.51041 \pm 0.012 \text{ periods}$

¹⁶

Saturn-Enceladus Periodic Orbit Families

- Parameters:
 - 50 initial conditions per family, 5,000 random sample size per initial condition,
 - Initial uncertainty: $\sigma_r = 1 \text{ km}$, $\sigma_v = 1 \text{ cm/s}$
 - $\mathrm{HZ}^*(\alpha=0.003)\Rightarrow 3\sigma$ confidence interval

Family	Time to Non-Gaussianity*
Distant Prograde	0.022084 ± 0.00046 periods
Southern Dragonfly	0.134874 ± 0.0029 periods
Northern Dragonfly	$0.14033 \pm 0.001 \text{ periods}$
Southern Butterfly	$0.14059 \pm 0.002 \text{ periods}$
Northern Butterfly	$0.14536{\pm}0.002~\mathrm{periods}$
L2 Northern Halo	$0.23744 \pm 0.0016 \text{ periods}$
L2 Southern Halo	$0.23932 \pm 0.0019 \text{ periods}$
L1 Southern Halo	$0.26968 \pm 0.0067 \text{ periods}$
L1 Northern Halo	$0.27395 \pm 0.004 \text{ periods}$
Distant Retrograde	$0.51041 \pm 0.012 \text{ periods}$

 L_1 Southern Halo L_2 Northern Halo L_2 Southern Halo Northern Butterfly Southern Butterfly Northern Dragonfly

Southern Dragonfly

Distant Prograde
Distant Retrograde L_1 Northern Halo

Saturn-Enceladus Periodic Orbit Families

- Parameters:
 - 50 initial conditions per family, 5,000 random sample size per initial condition,
 - Initial uncertainty: $\sigma_r = 1 \text{ km}$, $\sigma_v = 1 \text{ cm/s}$
 - $\mathrm{HZ}^*(\alpha=0.003)\Rightarrow 3\sigma$ confidence interval

Family	Time to Non-Gaussianity*
Distant Prograde	0.022084 ± 0.00046 periods
Southern Dragonfly	$0.134874 \pm 0.0029 \text{ periods}$
Northern Dragonfly	$0.14033 \pm 0.001 \text{ periods}$
Southern Butterfly	$0.14059 \pm 0.002 \text{ periods}$
Northern Butterfly	$0.14536 \pm 0.002 \text{ periods}$
L2 Northern Halo	$0.23744{\pm}0.0016 \text{ periods}$
L2 Southern Halo	0.23932 ± 0.0019 periods
L1 Southern Halo	0.26968 ± 0.0067 periods
L1 Northern Halo	$0.27395 \pm 0.004 \text{ periods}$
Distant Retrograde	$0.51041 \pm 0.012 \text{ periods}$

Saturn-Enceladus Periodic Orbit Families

- Parameters:
 - 50 initial conditions per family, 5,000 random sample size per initial condition,
 - Initial uncertainty: $\sigma_r = 1 \text{ km}$, $\sigma_v = 1 \text{ cm/s}$
 - $\mathrm{HZ}^*(\alpha=0.003)\Rightarrow 3\sigma$ confidence interval

Family	Time to Non-Gaussianity*
Distant Prograde	0.022084 ± 0.00046 periods
Southern Dragonfly	$0.134874 \pm 0.0029 \text{ periods}$
Northern Dragonfly	$0.14033 \pm 0.001 \text{ periods}$
Southern Butterfly	$0.14059 \pm 0.002 \text{ periods}$
Northern Butterfly	$0.14536 \pm 0.002 \text{ periods}$
L2 Northern Halo	0.23744 ± 0.0016 periods
L2 Southern Halo	$0.23932{\pm}0.0019$ periods
L1 Southern Halo	$0.26968 \pm 0.0067 \text{ periods}$
L1 Northern Halo	$0.27395 \pm 0.004 \text{ periods}$
Distant Retrograde	$0.51041 \pm 0.012 \text{ periods}$

^{*}Mean time \pm standard error

Distant Prograde
Distant Retrograde L_1 Northern Halo L_1 Southern Halo L_2 Northern Halo L_2 Southern Halo
Northern Butterfly
Southern Butterfly
Northern Dragonfly
Southern Dragonfly

Saturn-Enceladus Periodic Orbit Families

• Parameters:

- 50 initial conditions per family, 5,000 random sample size per initial condition,
- Initial uncertainty: $\sigma_r = 1 \text{ km}$, $\sigma_v = 1 \text{ cm/s}$
- $\mathrm{HZ}^*(\alpha=0.003)\Rightarrow 3\sigma$ confidence interval

Family	Time to Non-Gaussianity*
Distant Prograde	0.022084 ± 0.00046 periods
Southern Dragonfly	$0.134874 \pm 0.0029 \text{ periods}$
Northern Dragonfly	$0.14033 \pm 0.001 \text{ periods}$
Southern Butterfly	$0.14059 \pm 0.002 \text{ periods}$
Northern Butterfly	$0.14536 \pm 0.002 \text{ periods}$
L2 Northern Halo	0.23744 ± 0.0016 periods
L2 Southern Halo	0.23932 ± 0.0019 periods
L1 Southern Halo	$0.26968 {\pm} 0.0067 \text{ periods}$
L1 Northern Halo	$0.27395 \pm 0.004 \text{ periods}$
Distant Retrograde	0.51041 ± 0.012 periods

Distant Prograde
Distant Retrograde L_1 Northern Halo L_1 Southern Halo L_2 Northern Halo L_2 Southern Halo
Northern Butterfly
Southern Butterfly
Northern Dragonfly
Southern Dragonfly

Saturn-Enceladus Periodic Orbit Families

- Parameters:
 - 50 initial conditions per family, 5,000 random sample size per initial condition,
 - Initial uncertainty: $\sigma_r = 1 \text{ km}$, $\sigma_v = 1 \text{ cm/s}$
 - $\mathrm{HZ}^*(\alpha=0.003)\Rightarrow 3\sigma$ confidence interval

Family	Time to Non-Gaussianity*
Distant Prograde	0.022084 ± 0.00046 periods
Southern Dragonfly	$0.134874 \pm 0.0029 \text{ periods}$
Northern Dragonfly	$0.14033 \pm 0.001 \text{ periods}$
Southern Butterfly	$0.14059 \pm 0.002 \text{ periods}$
Northern Butterfly	$0.14536 \pm 0.002 \text{ periods}$
L2 Northern Halo	0.23744 ± 0.0016 periods
L2 Southern Halo	0.23932 ± 0.0019 periods
L1 Southern Halo	0.26968 ± 0.0067 periods
L1 Northern Halo	0.27395 ± 0.004 periods
Distant Retrograde	0.51041 ± 0.012 periods

Distant Prograde
Distant Retrograde L_1 Northern Halo L_1 Southern Halo L_2 Northern Halo L_2 Southern Halo
Northern Butterfly
Southern Butterfly
Northern Dragonfly
Southern Dragonfly

Saturn-Enceladus Periodic Orbit Families

- Parameters:
 - 50 initial conditions per family, 5,000 random sample size per initial condition,

15 |

- Initial uncertainty: $\sigma_r = 1 \text{ km}$, $\sigma_v = 1 \text{ cm/s}$
- $\mathrm{HZ}^*(\alpha=0.003)\Rightarrow 3\sigma$ confidence interval

Family	Time to Non-Gaussianity*				
Distant Prograde	0.022084 ± 0.00046 periods				
Southern Dragonfly	0.134874 ± 0.0029 periods				
Northern Dragonfly	$0.14033 \pm 0.001 \text{ periods}$				
Southern Butterfly	$0.14059 \pm 0.002 \text{ periods}$				
Northern Butterfly	$0.14536 \pm 0.002 \text{ periods}$				
L2 Northern Halo	0.23744 ± 0.0016 periods				
L2 Southern Halo	$0.23932 \pm 0.0019 \text{ periods}$				
L1 Southern Halo	$0.26968 \pm 0.0067 \text{ periods}$				
L1 Northern Halo	$0.27395 \pm 0.004 \text{ periods}$				
Distant Retrograde	0.51041 ± 0.012 periods				

^{*}Mean time \pm standard error

Mapping HZ to NED for Saturn-Enceladus CR3BP

• Curve fit function $(3\sigma \text{ confidence intervals})$:

 $HZ(NED) = (8.4148 \pm 0.8371)NED^3 + (0.9872 \pm 0.3490)NED^2 + (0.1944 \pm 0.0355)NED + (0.9828 \pm 0.0006)$

Mapping HZ to NED for Saturn-Enceladus CR3BP

Distant Prograde Orbit Family

• Curve fit function (3σ confidence intervals):

$$HZ(NED) = (2.2654 \pm 0.053202)NED + (0.98871 \pm 0.0031546)$$

Saturn-Enceladus NRHO Gaussianity Prediction

• We attempt to use our NED* to predict non-Gaussianity applied to a new trajectory

Enceladus NRHO trajectory propagated for 0.5 days, with initial uncertainty $\sigma_r = 100$ m and $\sigma_v = 1$ cm/s.

Saturn-Enceladus NRHO Gaussianity Prediction

• We attempt to use our NED* to predict non-Gaussianity applied to a new trajectory

UT is able to predict non-Gaussianity within 12 minutes of a 5,000 sample MC on a completely new trajectory using our derived NED *

Conclusions

Fundamental Questions

1. How do we measure Gaussianity?

$$HZ = \left[\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \exp\left(-\frac{\beta^2}{2}D_{ij}\right) \right] - \left[2\left(1+\beta^2\right)^{-\frac{d}{2}} \sum_{i=1}^{n} \exp\left(-\frac{\beta^2}{2(1+\beta^2)}D_i\right) \right] + \left[n(1+2\beta^2)^{-\frac{d}{2}} \right]$$

2. How long does it take for state uncertainty to become non-Gaussian ($\sigma_r = 1 \text{ km}$, $\sigma_v = 1 \text{ cm/s}$)?

Family	Distant Prograde			Southern Butterfly		L2 Northern Halo	L2 Southern Halo	L1 Southern Halo	L1 Northern Halo	Distant Retrograde
$t~({ m periods})$	0.022084	0.134874	0.14033	0.14059	0.14536	0.23744	0.23932	0.26968	0.27395	0.51041

- 3. Can we predict when state uncertainty is becoming non-Gaussian with an abstraction more efficient to propagate than a dense Monte Carlo?
 - Using 500 different periodic orbits from the Saturn-Enceladus system, we successfully mapped the NED to the HZ for the CR3BP

$$NED^* = 0.1344 \pm 0.0092$$

Future Work

Hybrid Filtering

- Using the NED* value derived in this work, we can develop a hybrid filter that propagates the first and second moments when uncertainty is near-Gaussian, and an ensemble distribution when the uncertainty is non-Gaussian
- Hybrid filter would be more accurate than a pure moment filter and more efficient than a pure ensemble filter

Sparse MC Gaussianity Detection

- NED must be mapped for each uncertainty magnitude and dynamics model, while HZ is a consistent statistic no matter the model or uncertainty
- What are the Type I/II error rates for a sparse MC distribution compared for the large one used in this analysis?

This investigation was supported by the NASA Space Technology Graduate Research Opportunities Fellowship (Grant #80 NSSC23K1219)

Thanks to Dr. Ely and Dr. Lo for mentoring and co-mentoring this summer, as well as for their invaluable insight and contributions.

Back of the envelope calculation:

$$10 \text{ families} \times 50 \frac{\text{orbits}}{\text{family}} \times 5,000 \frac{\text{sample size}}{\text{orbit}} \times 20 \frac{\text{mistakes}}{\text{sample size}} = 50 \text{ million trajectories}$$
propagated!

This would not have been possible without the Monte parallelization module, thanks to Margaret Ryback for helping me get this set up!

Thank you for your time. Questions?