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The Nonlinear State Estimation Problem

e Consider the state estimation of a general system

x=fx,)+w, y=hx,t)+v

where x € R is a realization of random variable X

e If f,h are linear and w,v are Gaussian zero-mean white noise, then

X(1) ~ N (u(0),Z(1)) =

1 T 1
N0l exp (—5 (x —p(@)) ZO 7 (x —ﬂ(f))>

e However, if f,h are nonlinear, then generally speaking

X(1) ~ px,1) # N (u(®), (1))

Fundamental Questions

1. How do we measure Gaussianity?
2. How long does it take for state uncertainty to become non-Gaussian?

3. Can we predict when state uncertainty is becoming non-Gaussian with an abstraction more
efficient to propagate than a dense Monte Carlo?



Being “kind-of” Gaussian
Analytical vs. Statistical Definitions

“Being ‘kind-of’ Gaussian is like being ‘kind-of’ dead.”
-Dr. Tom Bewley, UCSD

Analytical Definition of a Gaussian

1 1
3 = — =)' (x -
px | p; ) T exp 2(x 7 (x —p)

Table 1. Tests of MVN.

Statistical Definition of a Gaussian

Test Class Iris setosa
Mardia’s skewness Skewness /kurtosis Do not reject
Mardia’s kurtosis Skewness /kurtosis Do not reject
o Hawkins Goodness-of-fit Reject
A Monte Carlo comparison of the Type I and Type II error Kozio Goodness-of-fi Do not reject
. . . Mardia—Foster Skewness /kurtosis Rej:ect
rates of tests of multivariate normality Royston Goodness-of fit Reject
PRS Goodness-of-fit Do not reject
Henze—Zirkler Consistent Do not reject
% Mardia—Kent Skewness /kurtosis Do not reject
CHRISTOPHER J. MECKLINT and DANIEL J. MUNDFROMi Romeu—Ozturk Goodness-of-fit Reject
Singh (classical) Graphical /Correlational Reject
. . L. . . ingh (rob hical lational Rej
TDepartment of Mathematics and Statistics, Murray State University, Murray, KY 42071, USA i,}gi (robust) gf;%;g:s/ ffoiﬁe ationa foif)tt reject

tDepartment of Applied Statistics and Research Methods, University of Northern Colorado, CO, USA




Henze-Zirkler Statistic

D Truth Monte Carlo, x;

N

Y p _d

— fx) —>

1 n n

HZ = —ZZexp ——D — 2 (1+4%)"

n

MI&

e d = dimensionalit
’ HZ > HZ (¢ = 0.003) =  H, should be rejected

HZ < HZ (a = 0.003) =  H, cannot be rejected

e n = # of Monte Carlo samples
1 [(n(2d+ 1)

. r=—(
v2 o4

T
—1 : : . :
e« D= (xl.(k) — xj(k)> >0 (xl.(k) — xj@), Mahalanobis distance between each point and every other point

> , smoothing parameter

T
-1 .. :
e D = (xl.(k) — ﬂ(k)> > k) <xl.(k) — [l(k)>, Mahalanobis distance between each point and the mean

e HZ is approximately log-normally distributed, so a null hypothesis H, of Gaussianity may be tested



Henze-Zirkler Statistic

D Truth Monte Carlo, x;

d=72
n = 2000

— fx) —>

HZ = 0.9795 Log-normal CDF H7 = 10.8537
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The Unscented Transform

“...it is easier to approximate a probability distribution than it is to approximate an arbitrary
nonlinear function...”
-Dr. Jeffrey Uhlmann, Inventor of the Unscented Transform

Analytical Linearization (EKF)
=D \
3 (0
—» I'(x) —»
u®
¥ (k=1) —

Statistical Linearization (UKF)

States Weights 7"V
27D = p& b WD = k/(d + x)
g =plh+ <\/ (d+ K)Z(k_1)>i WD = x/(2(d + x)) —> f (x ) —>
20 = el _ <\/ d+ K>z<k—1>> WD = /(2 + )




Normalized Euclidean Distance

=9 C O Truth Monte Carlo, x; @ UT sigma point, Z; )
n = 2000 (k 1)

0
2d
Y wiz®
i
j=0

— fx) —>

%Ww D, <k>< / ‘

]

Jj=0

9

NED = || L! (k) Z W(k) (k)] where L~! is the inverse lower triangular of the covariance

e NED may be calculated from the UT sigma points alone, meaning it requires a fraction of the samples
that the HZ requires for an accurate value

e When f(x) is linear, NED remains at 0; when f(x) is nonlinear, NED may drift



Normalized Euclidean Distance

J=9 C O Truth Monte Carlo, x; ‘ UT sigma point, z; %)
n = 2000 ) <0
0
¢
2d
D whz®
o Jo
’ ¢ ¢ | —> f(x) —> =
: ; )
Y Wiz
J j
j=0
NED =0 NED =0.1691

e NED is not a consistent statistical test; without mapping it to a consistent statistical test (HZ) we have no
absolute information on the likelihood that the sigma points come from a Gaussian distribution

¢ What about kurtosis? A (+) Kurtosis, NED = 0

.No.rma.l 'NED =0
Distribution

(-) Kurtosis, NED =0
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e State uncertainty in closed orbits tends to oscillate between near-Gaussian during the quiescent, rectilinear phases

Two-Body Problem HZ-NED Mapping

and highly non-Gaussian near periapsis

Near-Gaussian
URISSNBO)-UON




Two-Body Problem HZ-NED Mapping

e State uncertainty in closed orbits tends to oscillate between near-Gaussian during the quiescent, rectilinear phases
and highly non-Gaussian near periapsis

The Journal of the Astronautical Sciences (2020) 67:1044-1062
https://doi.org/10.1007/s40295-019-00201-3
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Saturn-Enceladus CR3BP Periodic Orbits

Objective: Determine the relationship (?) between HZ and NED in the Circular Restricted

Three-Body Problem using periodic orbit families from the Saturn-Enceladus system.
e _/

Using 50 initial conditions from each of the ten following periodic orbit families...

— Distant Prograde - Distant Retrograde - [, Northern Halo L, Southern Halo — [, Northern Halo
~ L, Southern Halo — Northern Butterfly Northern Dragonfly - Southern Butterfly - Southern Dragonfly

...map the HZ to the NED for the CR3BP.

NASA Jet Propulsion Laboratory, “Three-Body Periodic Orbit Catalog” |



Time to Non-Gaussianity in CR3BP
Saturn-Enceladus Periodic Orbit Families

e Parameters:
e 50 initial conditions per family, 5,000 random sample size per initial condition,
e Initial uncertainty: 6.=1 km, 6, =1 cm/s
e HZ (@ = 0.003) = 36 confidence interval

15 B '§ 7] wn
= W o) W
1 = £ 3
° ° ° ° O - :5 w 8
Fam||y Time to Non-Gaussianity* g gﬁ g 2
S &3 S S
Distant Prograde 0.022084+0.00046 periods . v " <
o0 <O <N =
Southern Dragonfly 0.1348744-0.0029 periods p i i ph
| [m} il
| ‘ [
10 | - [ Distant Prograde
_ I I | —— Distant Retrograde
Southern Butterfly 0.140594-0.002 periods L, Northern Halo
I 1 I L, Southern Halo
. N [ I | Lo Northern Halo
Northern Butterfly 0.14536%0.002 periods = | : | I, Southern Halo
Northern Butterfly
1.2 Northern Halo 0.23744-40.0016 periods [ 0 | Southern Butterfly
| I j [ Northern Dragonfly
Southern Dragonfly
L2 Southern Halo 0.23932+0.0019 periods 5L I I |
| i |
| I [
| I [
| I [
| I [
Distant Retrograde 0.51041+0.012 periods | I [
I |
*Mean time =+ standard error 0 [ | Ll I [ I | Ll |
0 0.1 0.2 0.3 0.4 0.5 0.6

t (periods)
|2



Time to Non-Gaussianity in CR3BP
Saturn-Enceladus Periodic Orbit Families

e Parameters:

e 50 initial conditions per family, 5,000 random sample size per initial condition,

e Initial uncertainty: 6.=1 km, 6, =1 cm/s
e HZ (@ = 0.003) = 36 confidence interval

Family

Time to Non-Gaussianity*

Distant Prograde

0.022084+0.00046 periods

Southern Dragonfly

0.134874+0.0029 periods

Southern Butterfly

0.14059+0.002 periods

Northern Butterfly

0.14536%0.002 periods

HZ

L2 Northern Halo

0.23744+0.0016 periods

L2 Southern Halo

0.23932+0.0019 periods

Distant Retrograde

0.51041+£0.012 periods

*Mean time + standard error

15

10

| I | |

Distant Prograde
Distant Retrograde
L, Northern Halo
L1 Southern Halo
Lo Northern Halo
Lo Southern Halo
Northern Butterfly
Southern Butterfly
Northern Dragonfly
Southern Dragonfly

0.2 0.3 0.4 0.5
t (periods)

© State at initial epoch @ State at final Gaussianity epoch

0.6
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Time to Non-Gaussianity in CR3BP

Saturn-Enceladus Periodic Orbit Families

e Parameters:
e 50 initial conditions per family, 5,000 random sample size per initial condition,
e Initial uncertainty: 6., =1 km, 6, =1 cm/s
e HZ (a = 0.003) = 306 confidence interval

15 N (2
o
2
Family Time to Non-Gaussianity* 2
=
Distant Prograde 0.02208440.00046 periods 0
>
on
Southern Dragonfly 0.13487440.0029 periods =
|
0 [
L I Distant Prograde
Distant Retrograde
Southern Butterfly 0.1405940.002 periods I L, Northern Halo
[ L1 Southern Halo
. N | L Northern Halo
Northern Butterfly 0.14536+0.002 periods — / L, Southern Halo
Northern Butterfly
12 Northern Halo 0.2374440.0016 periods ' Southern Butterfly
I Northern Dragonfly
Southern Dragonfly
L2 Southern Halo 0.23932+0.0019 periods 51 I
[
[
I
I
[
Distant Retrograde 0.51041+0.012 periods [
*Mean time =+ standard error 0 | I | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6

t (periods)
© State at initial epoch @ State at final Gaussianity epoch | 4




Time to Non-Gaussianity in CR3BP

Saturn-Enceladus Periodic Orbit Families

e Parameters:
e 50 initial conditions per family, 5,000 random sample size per initial condition,
e Initial uncertainty: 6., =1 km, 6, =1 cm/s
e HZ (a = 0.003) = 306 confidence interval

15 —
Family Time to Non-Gaussianity*
Distant Prograde 0.02208440.00046 periods
Southern Dragonfly 0.1348744-0.0029 periods
10~ Distant Prograde
Distant Retrograde
Southern Butterfly 0.14059+0.002 periods D L, Northern Halo
<\f’ 1 L1 Southern Halo
: N Ls Northern Halo
Northern Butterfly 0.14536+0.002 periods — L, L, Southern Halo
<> Northern Butterfly
1.2 Northern Halo 0.2374440.0016 periods Southern Butterfly
v Northern Dragonfly
N Southern Dragonfly
L2 Southern Halo 0.23932+0.0019 periods 5L
Distant Retrograde 0.51041+0.012 periods
*Mean time =+ standard error 0 | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6

t (periods)

© State at initial epoch @ State at final Gaussianity epoch |15




Time to Non-Gaussianity in CR3BP

Saturn-Enceladus Periodic Orbit Families

e Parameters:
e 50 initial conditions per family, 5,000 random sample size per initial condition,
e Initial uncertainty: 6.=1 km, 6, =1 cm/s
e HZ (@ = 0.003) = 36 confidence interval

15 —
%
.2
Family Time to Non-Gaussianity* 3
:
Distant Prograde 0.022084+0.00046 periods b
N
S
Southern Dragonfly 0.1348744-0.0029 periods =
10 |
[ Distant Prograde
) [ Distant Retrograde
Southern Butterfly 0.14059+0.002 periods L, Northern Halo
I L1 Southern Halo
: N I Ly Northern Halo
Northern Butterfly 0.14536+0.002 periods — | L, Southern Halo
Northern Butterfly
1.2 Northern Halo 0.23744+0.0016 periods | Southern Butterfly
) Northern Dragonfly
Southern Dragonfly
L2 Southern Halo 0.2393240.0019 periods 51 I
I
I
I
I
I
Distant Retrograde 0.51041£0.012 periods |
*Mean time + standard error 0 | l I I | | I
0 0.1 0.2 0.3 0.4 0.5 0.6

t (periods)
© State at initial epoch @ State at final Gaussianity epoch 16




Time to Non-Gaussianity in CR3BP
Saturn-Enceladus Periodic Orbit Families

e Parameters:
e 50 initial conditions per family, 5,000 random sample size per initial condition,
e Initial uncertainty: 6.=1 km, 6, =1 cm/s
e HZ (@ = 0.003) = 36 confidence interval

15 —
3
° g
Fam||y Time to Non-Gaussianity* 3
:
Distant Prograde 0.022084+0.00046 periods <
\O
o
Southern Dragonfly 0.1348744-0.0029 periods =
|
10 |
[ Distant Prograde
Distant Retrograde
Southern Butterfly 0.1405940.002 periods | L, Northern Halo
I L1 Southern Halo
. N [ Ly Northern Halo
Northern Butterfly 0.14536+0.002 periods = : L, Southern Halo
Northern Butterfly
12 Northern Halo 0.2374440.0016 periods ' Southern Butterfly
I Northern Dragonfly
Southern Dragonfly
L2 Southern Halo 0.23932+0.0019 periods 51 [
l
l
l
l
l
Distant Retrograde 0.51041+0.012 periods [
*Mean time =+ standard error 0 | l | | | | I
0 0.1 0.2 0.3 0.4 0.5 0.6

t (periods)
© State at initial epoch @ State at final Gaussianity epoch |7




Time to Non-Gaussianity in CR3BP

Saturn-Enceladus Periodic Orbit Families

e Parameters:

e 50 initial conditions per family, 5,000 random sample size per initial condition,

e Initial uncertainty: 6.=1 km, 6, =1 cm/s
e HZ (@ = 0.003) = 36 confidence interval

Family

Time to Non-Gaussianity*

Distant Prograde

0.022084+0.00046 periods

Southern Dragonfly

0.134874+0.0029 periods

Southern Butterfly

0.14059+0.002 periods

Northern Butterfly

0.14536%0.002 periods

HZ

L2 Northern Halo

0.2374440.0016 periods

L2 Southern Halo

0.23932+0.0019 periods

Distant Retrograde

0.51041+£0.012 periods

*Mean time + standard error

15

10

t (periods)

© State at initial epoch @ State at final Gaussianity epoch

B 8
o
=
_H
3
8
o
[
l
| Ly
| O
l
l
l
l
B |
l
l
l
l
|
|
| | [ | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6
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Time to Non-Gaussianity in CR3BP
Saturn-Enceladus Periodic Orbit Families

e Parameters:

e 50 initial conditions per family, 5,000 random sample size per initial condition,

e Initial uncertainty: 6.=1 km, 6, =1 cm/s
e HZ (@ = 0.003) = 36 confidence interval

Family

Time to Non-Gaussianity*

Distant Prograde

0.022084+0.00046 periods

Southern Dragonfly

0.134874+0.0029 periods

Southern Butterfly

0.14059+0.002 periods

Northern Butterfly

0.14536%0.002 periods

HZ

L2 Northern Halo

0.23744+0.0016 periods

L2 Southern Halo

0.23932+0.0019 periods

Distant Retrograde

0.51041+£0.012 periods

*Mean time + standard error

15

10

t (periods)

© State at initial epoch @ State at final Gaussianity epoch

o
l
- I L
! O
|
I
l
l
[
B I
I
l
l
[
I
|
| | 1 | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6

19



Time to Non-Gaussianity in CR3BP

Saturn-Enceladus Periodic Orbit Families

e Parameters:
e 50 initial conditions per family, 5,000 random sample size per initial condition,
e Initial uncertainty: 6., =1 km, 6, =1 cm/s
e HZ (a = 0.003) = 306 confidence interval

15 —
Family Time to Non-Gaussianity*
Distant Prograde 0.02208440.00046 periods
Southern Dragonfly 0.1348744-0.0029 periods
10 - 4 Distant Prograde
Distant Retrograde
Southern Butterfly 0.14059+0.002 periods i L, Northern Halo
O L1 Southern Halo
: N Ly Northern Halo
Northern Butterfly 0.14536+0.002 periods — L, Southern Halo
Northern Butterfly
1.2 Northern Halo 0.2374440.0016 periods Southern Butterfly
Northern Dragonfly
Southern Dragonfly
L2 Southern Halo 0.23932+0.0019 periods 5L
Distant Retrograde 0.51041+0.012 periods
*Mean time =+ standard error 0 | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6

t (periods)

© State at initial epoch @ State at final Gaussianity epoch 20




Time to Non-Gaussianity in CR3BP

Saturn-Enceladus Periodic Orbit Families

e Parameters:
e 50 initial conditions per family, 5,000 random sample size per initial condition,
e Initial uncertainty: 6., =1 km, 6, =1 cm/s
e HZ (a = 0.003) = 306 confidence interval

15 —
Family Time to Non-Gaussianity*
Distant Prograde 0.02208440.00046 periods
Southern Dragonfly 0.1348744-0.0029 periods
10 - Distant Prograde
Distant Retrograde
Southern Butterfly 0.14059+0.002 periods $Li Ly Northern Halo
K¢ L; Southern Halo
: N L Ls Northern Halo
Northern Butterfly 0.14536+0.002 periods — . L, Southern Halo
Northern Butterfly
1.2 Northern Halo 0.2374440.0016 periods Southern Butterfly
Northern Dragonfly
Southern Dragonfly
L2 Southern Halo 0.23932+0.0019 periods 5L
Distant Retrograde 0.51041+0.012 periods
*Mean time =+ standard error 0 | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6

t (periods)

© State at initial epoch @ State at final Gaussianity epoch 21




Time to Non-Gaussianity in CR3BP

Saturn-Enceladus Periodic Orbit Families

e Parameters:
e 50 initial conditions per family, 5,000 random sample size per initial condition,
e Initial uncertainty: 6.=1 km, 6, =1 cm/s
e HZ (@ = 0.003) = 36 confidence interval

15 — ,
Family Time to Non-Gaussianity* 3
(@\|
=
Distant Prograde 0.022084-+0.00046 periods 3
3
Southern Dragonfly 0.134874+0.0029 periods pt
[
10 [ Distant Prograde
——— Distant Retrograde
Southern Butterfly 0.1405940.002 periods I L, Northern Halo
I L; Southern Halo
: N | L> Northern Halo
Northern Butterfly 0.14536+0.002 periods — | L, Southern Halo
- Northern Butterfly
1.2 Northern Halo 0.23744+0.0016 periods | Southern Butterfly
i Northern Dragonfly
Southern Dragonfly
L2 Southern Halo 0.23932+0.0019 periods 51 I
|
|
|
[
[
Distant Retrograde 0.51041+0.012 periods | S
*Mean time =+ standard error 0 | | | | L |
0 0.1 0.2 0.3 0.4 0.5 0.6

t (periods)
© State at initial epoch @ State at final Gaussianity epoch 22
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Mapping HZ to NED for Saturn-Enceladus CR3BP

- we . >
NED* = 0.1344 =+ 0.0092 s o
® o Ty
| ' [ @ SO
1.45 : ‘:"! ‘,éf‘ L 0“ .!
14 : (" / ® .h‘
. : o) &%
: .
: °
1.35 : L0,
1.3 :
: ¢ Distant Retrograde
. L, Northern Halo
1.25 : L Southern Halo
e I e L Northern Halo
: e L» Southern Halo
T 12 ! e Northern Butterfly
: e Southern Butterfly
1.15 : Northern Dragonfly
. » e Southern Dragonfly
1.1 :
HZ" (o = 0.003
105 oo HE(e=0003)
1,
0.95%
L | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

e Curve fit function (30 confidence intervals):

HZ(NED) = (8.4148 = 0.8371)NED" + (0.9872 + 0.3490)NED? + (0.1944 + 0.0355)NED + (0.9828 =+ 0.0006)
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Mapping HZ to NED for Saturn-Enceladus CR3BP
Distant Prograde Orbit Family

S0

NED* = 0.0259 + 0.0015 R o
1.45 - ’ :""‘ '."': g °

1.4 : F
1.35

1.3

e Distant Prograde
Distant Retrograde
Ly Northern Halo
L1 Southern Halo
Lo Northern Halo
Lo Southern Halo
Northern Butterfly
Southern Butterfly
Northern Dragonfly
Southern Dragonfly

1.25

1.15

HZ* (o = 0.003)

e Curve fit function (30 confidence intervals):

HZ(NED) = (2.2654 £ 0.053202)NED + (0.98871 £ 0.0031546)
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Saturn-Enceladus NRHO Gaussianity Prediction

e We attempt to use our NED” to predict non-Gaussianity applied to a new trajectory

——MC ——UT sigma points —— Nominal

= 10
S
2210 | | | | 1 | | | | 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
32.5 km periapsis ~ 50
ALl = .50 | | | | 1 | | | | 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
800 -
— 50 -
600 2 250 1 1 1 | 1 1 | 1 1 1
/g 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
24 400 - - x107
N ? %_
ke
<, N ——
200 ~ & -4 | | | | | | | | | 1
< 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0~ 0
E 0.01
< 0 ———
-200 >-0.01 = 1 1 1 1 | | | 1 1 1
| ~ 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-800 600 —
200 ~ 0.02
0 i‘« 0.01
400 = 0 ———
k 400 -600 R\ -0.01 | | | | | | | | | |
x (km) y (km) S 005 01 015 02 025 03 035 04 045 05

t (days)

Enceladus NRHO trajectory propagated for 0.5 days, with initial uncertainty ¢, = 100 m and o, = 1 cm/s.

Russell, R.P. and Lara, M., 2009. On the design of an Enceladus science orbit. Acta Astronautica, 65(1-2), pp.27-39. 25
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Saturn-Enceladus NRHO Gaussianity Prediction

e We attempt to use our NED” to predict non-Gaussianity applied to a new trajectory

100 ~
—— MC 0.42361 days : 0.43171 days —0.6

90 H{ = UT |

80

70

60

50

HZ

40

30

20

10

| | | | | |
0 0.1 0.2 0.3 0.4 0.5

t (days)

UT is able to predict non-(Gaussianity within 12 minutes of a 5,000

sample MC on a completely new trajectory using our derived NED"
26




Conclusions

Fundamental Questions

1. How do we measure Gaussianity?

; ]21 exp ——D — 1 + ,62 %g eXp 2(1'i—2ﬁ2) D; )| + [n(l + 2,62)—%]

2. How long does it take for state uncertainty to become non-Gaussian (6, =1 km, 6, =1 cm/s)?

L2 L2
. Distant Southern Southern | Northern Distant
Family P i | q Butter Butterf] Northern | Southern Ret q
rograde ragonfly utterfly utterfly Halo Halo etrograde
t (periods) | 0.022084 | 0.134874 0.14059 0.14536 0.23744 0.23932 0.51041

3. Can we predict when state uncertainty is becoming non-Gaussian with an abstraction more
efficient to propagate than a dense Monte Carlo?

e Using 500 different periodic orbits from the Saturn-Enceladus system, we 2
successtully mapped the NED to the HZ for the CR3BP NED 0.1344 + 0.0092
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Future Work

Hybrid Filtering

e Using the NED* value derived in this work, we
can develop a hybrid filter that propagates the
first and second moments when uncertainty is
near-Gaussian, and an ensemble distribution
when the uncertainty is non-Gaussian

Near-Gaussian

e Hybrid filter would be more accurate than a
pure moment filter and more efficient than a

pure ensemble filter

Gaussian

, “ —n = 500
i — = . . -
\ : mprood Sparse MC Gaussianity Detection
0.8 | : = 500000
: - e NED must be mapped for each uncertainty
— — . Ol — . : : :
S ¢ o, st € magnitude and dynamics model, while HZ is a
? ﬂ{ 0 ! 1 consistent statistic no matter the model or
N S| S = uncertainty
ET’ 0.4 n U
N 3! « What are the Type I/II error rates for a sparse
0.2 | : MC distribution compared for the large one
| : used in this analysis?
. | : Non-Gaussian

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
HZ 28
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Back of the envelope calculation:

. orbits sample size mistakes . , ,
10 families x 50 — % 5,000 : X 20 — = 50 million trajectories
family orbit sample size
propagated!

This would not have been possible without the Monte parallelization module,
thanks to Margaret Ryback for helping me get this set up!

Thank you for your time. Questions?

29



